Silicon nanosheets are fascinating anode materials for lithium-ion batteries because of their high specific capacities, structural stability, and fast kinetics in alloying/dealloying with Li. The nanosheets can be synthesized through chemical vapor deposition (CVD), topochemical reaction, and templating method. After coating with a carbon nanolayer, they exhibit enhanced electrochemical performance. However, it is challenging to synthesize ultrathin carbon-coated silicon nanosheets. In this work, porous silicon/carbon (pSi/C) composite nanosheets are synthesized by reducing the carbon-coated expanded vermiculite with metallic Al in the molten salts. The as-prepared pSi/C nanosheets retain the layered nanostructure of vermiculite, with a thickness of less than 50 nm. The carbon nanolayer serves as the diffusion barrier and mechanical support for the growth of mesoporous silicon nanosheets. The anode of pSi/C nanosheets achieves remarkable electrochemical performance, exhibiting a reversible capacity of 1837 mA h g −1 at 4 A g −1 and retaining 71.5% of the initial capacity after 500 cycles. The process can be extended to the synthesis of the pSi/C composite nanotube by using other carbon-coated silicate templates such as halloysite.
Flame spray pyrolysis was a process to produce oxide nanoparticles in a self-sustaining flame. When the produced nanoparticles were deposited on a substrate, nanostructured oxide thin films could be obtained. However, the size of the thin film was usually limited by the fixed substrate. Here, we demonstrated that thin film with a large area could be deposited by using the moving substrate, which was precisely controlled by servo motors. As a result, the flame tip could scan over the substrate and deposit the nanoparticles on it line by line, analogues to a printing process called flame-assisted printing (FAP). As an example, nanostructured bismuth-oxide thin films with a size of up to 20 cm × 20 cm were deposited with the FAP process. The bismuth-oxide thin film exhibited a stable electrochromic property with a high modulation of 70.5%. The excellent performance could be ascribed to its porous nanostructure formed in the FAP process. The process can be extended to deposit other various oxides (e.g., tungsten-oxide) thin films with a large size for versatile applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.