Background:
The coronavirus disease 2019 (COVID-19) pandemic has impacted clinical care worldwide. Evidence of how this health crisis affected common conditions like blood pressure (BP) control is uncertain.
Methods:
We used longitudinal BP data from an ongoing randomized clinical trial to examine variations in home BP monitored via a smartphone-based application (app) in a total of 7394 elderly patients with hypertension aged 60 to 80 years stratified by their location in Wuhan (n=283) compared with other provinces of China (n=7111). Change in morning systolic BP (SBP) was analyzed for 5 30-day phases during the pandemic, including preepidemic (October 21 to November 20, 2019), incubation (November 21 to December 20, 2019), developing (December 21, 2019 to January 20, 2020), outbreak (January 21 to February 20, 2020), and plateau (February 21 to March 21, 2020).
Results:
Compared with non-Wuhan areas of China, average morning SBP (adjusted for age, sex, body mass index) in Wuhan patients was significantly higher during the epidemic growth phases, which returned to normal at the plateau. Between-group differences in ΔSBP were +2.5, +3.0, and +2.1 mm Hg at the incubation, developing, and outbreak phases of COVID-19 (
P
<0.001), respectively. Sensitivity analysis showed a similar trend in trajectory pattern of SBP in both the intensive and standard BP control groups of the trial. Patients in Wuhan also had an increased regimen change in antihypertensive drugs during the outbreak compared with non-Wuhan patients. Expectedly, Wuhan patients were more likely to check their BP via the app, while doctors were less likely to monitor the app for BP control during the pandemic.
Conclusions:
Our data demonstrate that the COVID-19 pandemic was associated with a short-term increase in morning SBP among elderly patients with hypertension in Wuhan but not other parts of China. Further study will be needed to understand if these findings extended to other parts of the world substantially affected by the virus.
Registration:
URL:
https://www.clinicaltrials.gov
. Unique identifier: NCT03015311.
In the past two decades, clean energy such as hydro, wind, and solar power has achieved significant development under the “green recovery” global goal, and it may become the key method for countries to realize a low-carbon energy system. Here, the development of renewable energy power generation, the typical hydro-wind-photovoltaic complementary practical project, is summarized, and some key problems in complementary systems such as the description and prediction of the power generation law in large-scale stations, risk management, and coordinated operation are analyzed. In terms of these problems, this paper systematically summarizes the research methods and characteristics of a hydro-wind-solar hybrid system and expounds upon the technical realization process from the prediction and description of wind and solar power station cluster output, the risks brought about by large-scale renewable energy grid-connected operation, and the long-term and short-term coordination modeling and resolution thoughts on the hydro-wind-solar hybrid system in cluster mode. Finally, based on the aforementioned analysis, the existing research gaps are discussed from the standpoints of generation forecast, risk management, and cluster scheduling, and the future work outlook is presented accordingly. A hybrid system that combines hydro, wind, and solar energy is emerging as a way to make up for each other’s shortcomings and will be a fruitful area of study in the future.
Summary
This study demonstrated the effect on microcrystalline starch (MS) with different relative crystallinity (RC) by atmospheric pressure plasma jet (APPJ) treatment for 1, 3, 5 or 7 min. The morphology of MS granules was destroyed according to Scanning electron microscopy (SEM) analysis. APPJ treatment did not change the crystalline type of MS, but obviously decreased the RC of MS. Short‐range molecular order of MS was clearly decreased after APPJ treatment though the Fourier transform infrared (FTIR) and Raman spectroscopy. Notably, the effect of APPJ on crystalline and short‐range order structure of MS was gradually increased with the increase of RC, which revealed that the crystalline region of MS might be destroyed by APPJ. Furthermore, the pH of MS was decreased while water binding capacity (WBC) and swelling volume (SV) of MS were increased. Therefore, the APPJ treatment could be used as an alternative physical technology for starch modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.