This study investigates the cracking mechanism of an elliptical bipolar linear-shaped charge blasting via theoretical analysis, experimentation, and numerical simulation. The results show that in the shaped charge blasting, due to the effect of the shaped jet in the direction of the shaped energy, a certain initial crack length is formed. In the action phase of the stress wave, the energy accumulation direction reduces the load required for crack initiation and propagation. The crack propagation length generated in the energy accumulation direction is greater than the nonenergy accumulation direction. The load value of the initial shock wave in the shaped energy direction is significantly greater, by about 1.64 times than the nonshaped energy direction, and the peak load acting time is earlier than the nonshaped energy direction. A large amount of impact explosion energy is consumed in the area close to the charged energy explosion due to the crushing area, regardless of the charged or noncharged energy direction. In the energy accumulation direction, the shock wave attenuation rate is faster in the near explosion area and the stress wave attenuation rate is slower in the mid and far areas of the explosion. The difference in the explosion load in the mid and far areas is small. In the nonconcentrated direction, owing to the reflected compression wave, the second stress peak appears in the nonconcentrated direction. However, its value is smaller than that of the initial shock wave peak.
Based on LS-DYNA numerical simulation analysis and comparison with laboratory tests, the blasting crack development dynamic evolution mechanism of elliptical bipolar linear shaped charge is analyzed. The development law of rock crack and optimal radial decoupling coefficient under different blast hole diameters were studied. The results revealed that the blasting with elliptical bipolar linear shaped charge had a remarkable effect on the directional crack formation, and the maximum effective stress of rock close to the position of shaped charge in the direction of concentrating energy is about 2.3 times of that in the direction of nonconcentrated energy. Moreover, the directional crack could be formed by blasting with elliptical bipolar linear shaped charge with different hole diameters, whilst the length of the main crack was related to the radial decoupling coefficient. Particularly, the main crack reached the longest when the radial decoupling coefficient was 3.36.
Rock mass blasting is a complex process that involves the coupling of both discontinuous and continuous media. This paper aims to reveal the dynamic failure process between adjacent boreholes under an elliptical bipolar linear charge structure using the SPH-FEM (smooth particle hydrodynamics and finite-element method) coupling algorithm numerical simulation method. The numerical simulation results are compared with the existing experimental results, which proves the rationality of the algorithm. According to the numerical simulation results, the shaped jet will first shock the hole wall and form a stress concentration zone that will guide the formation of cracks during the stress wave propagation process. In the case of double-hole blast loading, there is a tendency for cracks coalescence to develop between adjacent boreholes due to the superposition of stresses between the double holes and the increase in damage and plastic strain. The best blasting results will be achieved with this structure when the distance between adjacent holes is 110 cm. Finally, the superiority of elliptical bipolar linear blasting in engineering blasting was verified through field experiments. The results of this study provide a reference for subsequent applications of elliptical bipolar structures in the field of rock blasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.