Rabies virus (RABV) causes a fatal infectious disease, but effective protection may be achieved with the use of rabies immunoglobulin and a rabies vaccine. Virus-neutralizing antibodies (VNA), which play an important role in the prevention of rabies, are commonly evaluated by the RABV neutralizing test. For determining serum VNA levels or virus titers during the RABV vaccine manufacturing process, reliability of the assay method is highly important and mainly dependent on the diagnostic antibody. Most diagnostic antibodies are monoclonal antibodies (mAbs) made from hybridoma cell lines and are costly and time consuming to prepare. Thus, production of a cost-effective mAb for determining rabies VNA levels or RABV titers is needed. In this report, we describe the prokaryotic production of a RABV-specific single-chain variable fragment (scFv) protein with a His-tag (scFv98H) from a previously constructed plasmid in a bioreactor, including the purification and refolding process as well as the functional testing of the protein. The antigen-specific binding characteristics, affinity, and relative affinity of the purified protein were tested. The scFv98H antibody was compared with a commercial RABV nucleoprotein mAb for assaying the VNA level of anti-rabies serum samples from different sources or testing the growth kinetics of RABV strains for vaccine manufactured in China. The results indicated that scFv98H may be used as a novel diagnostic tool to assay VNA levels or virus titers and may be used as an alternative for the diagnostic antibody presently employed for these purposes.
Lethal rabies can be prevented effectively by post-exposure prophylactic (PEP) with rabies immunoglobulin (RIG). Single-chain variable fragment (scFv), which is composed of a variable heavy chain (VH) and variable light chain (VL) connected by a peptide linker, may be developed as alternative to RIG for neutralizing rabies virus (RV). However, our previously constructed scFv (FV57S) with the (NH2) VH-linker-VL (COOH) orientation showed a lower neutralizing potency than its parent RIG. This orientation may inhibit FV57S from refolding into an intact and correct conformation. Therefore, the RFV57S protein with a VL-linker-VH orientation was constructed based on FV57S. A HIS tag was incorporated to aid in purification and detection of RFV57S and FV57S. However, abilities of RFV57S and FV57S to bind with the anti-HIS tag mAb were different. Therefore, a novel direct ELISA was established by utilizing a biotin-labeled truncated glycoprotein of RV. Although with similar stability and in vitro neutralizing potency as FV57S, RFV57S showed enhanced binding ability, affinity and in vivo protective efficacy against lethal dose of RV. Our studies support the feasibility of developing a scFv with reversed orientation and provide a novel method for evaluating the binding ability, stability and affinity of engineered antibodies recognizing linear epitope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.