Myofibroblasts escape apoptosis and proliferate abnormally under pathological conditions, especially fibrosis; they synthesize and secrete a large amount of extracellular matrix (ECM), such as α-SMA and collagen, which leads to the distortion of organ parenchyma structure, an imbalance in collagen deposition and degradation, and the replacement of parenchymal cells by fibrous connective tissues. Fibroblast to myofibroblast transition (FMT) is considered to be the main source of myofibroblasts. Therefore, it is crucial to explore the influencing factors regulating the process of FMT for the prevention, treatment, and diagnosis of FMT-related diseases. In recent years, non-coding RNAs, including microRNA, long non-coding RNAs, and circular RNAs, have attracted extensive attention from scientists due to their powerful regulatory functions, and they have been found to play a vital role in regulating FMT. In this review, we summarized ncRNAs which regulate FMT during fibrosis and found that they mainly regulated signaling pathways, including TGF-β/Smad, MAPK/P38/ERK/JNK, PI3K/AKT, and WNT/β-catenin. Furthermore, the expression of downstream transcription factors can be promoted or inhibited, indicating that ncRNAs have the potential to be a new therapeutic target for FMT-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.