Equilibrium and nonequilibrium molecular dynamics (MD) simulations have been performed in both isochoric-isothermal (NVT) and isobaric-isothermal (NPT) ensemble systems. Under steady state shearing conditions, thermodynamic states and rheological properties of liquid n-hexadecane molecules have been studied. Between equilibrium and nonequilibrium states, it is important to understand how shear rates (gamma) affect the thermodynamic state variables of temperature, pressure, and density. At lower shear rates of gamma<1 x 10(11) s(-1), the relationships between the thermodynamic variables at nonequilibrium states closely approximate those at equilibrium states, namely, the liquid is very near its Newtonian fluid regime. Conversely, at extreme shear rates of gamma>1 x 10(11) s(-1), specific behavior of shear dilatancy is observed in the variations of nonequilibrium thermodynamic states. Significantly, by analyzing the effects of changes in temperature, pressure, and density on shear flow system, we report a variety of rheological properties including the shear thinning relationship between viscosity and shear rate, zero-shear-rate viscosity, rotational relaxation time, and critical shear rate. In addition, the flow activation energy and the pressure-viscosity coefficient determined through Arrhenius and Barus equations acceptably agree with the related experimental and MD simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.