In this study we investigated the crystallisation behaviours of stereocomplex crystals in poly(l‐lactic acid)/poly(d‐lactic acid) (PLLA/PDLA) blends (LD blends) of various weight ratios. The crystallisation and melting behaviours were studied using DSC, and the crystal structure was analysed through wide‐angle X‐ray diffraction. The morphology of homocrystals and stereocomplex crystals in the blends was examined using a hot‐stage polarising microscope and a scanning electron microscope. The DSC results showed that homocrystals and stereocomplex crystals were present in all LD blends except that with 50 wt% PLLA/50 wt% PDLA; in this blend, only stereocomplex crystals were present. The regime II → III transition temperature of stereocomplex crystals in a Lauritzen–Hoffman plot of the LD blends was determined to be 165 °C. A concentric spherulite consisting of stereocomplex crystals and homocrystals formed under two‐step isothermal crystallisation conditions with three growth stages was observed. The confined spherulitic growth rate in the concentric spherulite and the unrestricted spherulitic growth rate in individual spherulites were also analysed. © 2018 Society of Chemical Industry
A series of poly(l-lactide)/poly(d-lactide) blended chips (LDC), as-spun LD fibers (LDA) and hot-drawn LD fibers (LDH) were prepared for investigating the homocrystallization and stereocomplex crystallization behaviors of LDA and LDH fibers during heating. Modulated differential scanning calorimetry (MDSC), hot stage polarized microscopy (HSPM), and real-time wide-angle X-ray diffraction (WAXD) were used for studying the crystallization and melting behaviors, fiber morphology, and crystalline structure evolution of the LDA and LDH fibers’ homocrystals and stereocomplex crystals during heating. The molecular chain orientations of the LDA and LDH fibers were obtained through spinning and improved through the hot drawing processes. When the molecular chain was oriented on the fiber axis, the homocrystals and stereocomplex crystals of the fibers began to form in turn as the heating temperature exceeded the glass transition temperature of the fiber. The side-by-side packing of the molecular chains was promoted by mixing the molecular chains with the extrusion screw during the spinning process, facilitating stereocomplex crystallization. When the LDA fiber was heated above the glass transition temperature of the fiber, movement of the fiber molecular chain—including molecular chain orientation and relaxation, as well as crystallization, melting, and recrystallization of homocrystals and stereocomplex crystals—were investigated through HSPM. MDSC and real-time WAXD were used to observe the molecular chains of the melted poly(l-lactide) and poly(d-lactide) homocrystals of the fibers rearranging and transiting to form stereocomplex crystals during heating.
Polylactide (PLA) is a biodegradable thermoplastic aliphatic polyester. The thermal stability and crystallization behavior of PLA are extremely sensitive to storage, processing, and usage conditions. This work systematically studied the thermal stability and crystallization behavior of poly(L-lactide) (PLLA), poly(D-lactide) (PDLA), and a PLLA/PDLA (LD) blend, which were stored under two sets of laboratory storage conditions: (1) stored in a vacuum-free desiccator and (2) stored in vacuum-sealed bags. Both were stored at room temperature for 3 years. Gel permeation chromatography results revealed that the PLLA, PDLA, and LD samples hydrolyzed slowly when stored in vacuum-sealed bags and degraded significantly when stored in a vacuum-free desiccator; this process significantly reduced the thermal stability of the samples stored in the vacuum-free desiccator. Owing to hydrolysis, the levorotation and dextrorotation (L- and D-) molecular chains were shortened; consequently, more nuclei were formed, and this caused the melting points of the PLLA, PDLA, and LD samples to decrease and the melting enthalpy of the crystals in these samples to increase. Wide-angle X-ray diffraction analysis revealed that when the L- and D- molecular chains were packed side by side to form stereocomplex crystals and the randomly arranged L- and D- molecular chains were easy hydrolyzed and degraded, this interfered with the formation of homocrystals in LD. When PLLA, PDLA, and LD samples are stored in a vacuum-free desiccator, they will be significantly hydrolyzed, resulting in the formation of only stereocomplex crystals, and no homocrystals are observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.