Conventional soft-lithography methods involving the transfer of molecular "inks" from polymeric stamps to substrates often encounter micrometer-scale resolution limits due to diffusion of the transferred molecules during printing. We report a "subtractive" stamping process in which silicone rubber stamps, activated by oxygen plasma, selectively remove hydroxyl-terminated alkanethiols from self-assembled monolayers (SAMs) on gold surfaces with high pattern fidelity. The covalent interactions formed at the stamp-substrate interface are sufficiently strong to remove not only alkanethiol molecules but also gold atoms from the substrate. A variety of high-resolution patterned features were fabricated, and stamps were cleaned and reused many times without feature deterioration. The remaining SAM acted as a resist for etching exposed gold features. Monolayer backfilling into the lift-off areas enabled patterned protein capture, and 40-nanometer chemical patterns were achieved.
We demonstrate straightforward fabrication of highly sensitive biosensor arrays based on field-effect transistors, using an efficient high-throughput, large-area patterning process. Chemical lift-off lithography is used to construct field-effect transistor arrays with high spatial precision suitable for the fabrication of both micrometer- and nanometer-scale devices. Sol-gel processing is used to deposit ultrathin (∼4 nm) In2O3 films as semiconducting channel layers. The aqueous sol-gel process produces uniform In2O3 coatings with thicknesses of a few nanometers over large areas through simple spin-coating, and only low-temperature thermal annealing of the coatings is required. The ultrathin In2O3 enables construction of highly sensitive and selective biosensors through immobilization of specific aptamers to the channel surface; the ability to detect subnanomolar concentrations of dopamine is demonstrated.
Self-assembled monolayers are a unique class of nanostructured materials, with properties determined by their molecular lattice structures, as well as the interfaces with their substrates and environments. As with other nanostructured materials, defects and dimensionality play important roles in the physical, chemical, and biological properties of the monolayers. In this review, we discuss monolayer structures ranging from surfaces (two-dimensional) down to single molecules (zero-dimensional), with a focus on applications of each type of structure, and on techniques that enable characterization of monolayer physical properties down to the single-molecule scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.