The impeller is the core component of the centrifugal compressor. Aiming to solve problems related to a large mass, high energy consumption, and large vibration of the existing centrifugal impeller, a semi-open supersonic centrifugal impeller provided by Krain et al. was redesigned in this paper. The redesign was based on Tsai-Wu failure theory and the two-way fluid-structure coupling method. Firstly, the geometric and numerical models were established using the geometric data found in the literature. Then, the established geometric and numerical models were verified through experimental data. Finally, the impeller was optimized from three aspects: material lightweight, composite material layering, and tip clearance. The results have shown that following the optimization, the maximum impeller stress was reduced by 48.77% when compared to the traditional 17-4PH material impeller. The maximum vibration deformation was reduced by 60.4%, as well as the resonance probability. The pressure ratio was increased by 0.8%, and the pressure and velocity reverse gradient trend near the blade tip were significantly reduced, while the flow field was more stable. The research results presented in this paper hence provide a basis for the application of composite materials in centrifugal impellers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.