The mechanism of aldosterone-producing adrenocortical adenoma (APA) pathogenesis and the role of microRNAs (miRNAs) in APA pathogenesis have not been completely clarified. We examined the expression and function of miR-140-3p, miR-193a-3p and miR-22-3p, which have binding sites in CYP11B2. Expression of miRNAs and CYP11B2 mRNA was measured by quantitative reverse transcription PCR (qRT-PCR). Cell proliferation was monitored by colorimetric analysis, and cell apoptosis and cell cycle progression were analysed by flow cytometry. ELISA was carried out to detect aldosterone levels in cell culture supernatants. Luciferase reporter assays, qRT-PCR and Western blotting were performed to identify CYP11B2 as a target of miR-193a-3p. Of the three miRNAs examined, miR-193a-3p exhibited a significant decrease and CYP11B2 mRNA exhibited a significant increase in expression in APA compared with adjacent normal adrenal gland tissue. Transfection of miR-193a-3p mimic into the human adrenocortical cell line H295R showed that elevated miR-193a-3p expression inhibits proliferation and aldosterone secretion, induces G1-phase arrest and promotes apoptosis in H295R cells. Furthermore, in luciferase reporter assays, overexpression of miR-193a-3p in H295R cells significantly reduced the luciferase activity of the wild-type CYP11B2 3'-UTR construct, which could be reversed by mutation of the miR-193a-3p-binding site. Moreover, miR-193a-3p overexpression downregulated CYP11B2 mRNA and protein expression. Finally, overexpression of CYP11B2 diminished the effects of miR-193a-3p on H295R cells. Taken together, our results suggest that CYP11B2 levels may be modulated by miR-193a-3p in APA, which could explain, at least partially, why downregulation of miR-193a-3p during APA formation may promote cell growth and suppress apoptosis.
Background The failure of treatment for breast cancer usually results from distant metastasis in which the epithelial-mesenchymal transition (EMT) plays a critical role. Hyperinsulinemia, the hallmark of Type 2 diabetes mellitus (T2DM), has been regarded as a key risk factor for the progression of breast cancer. Nuclear receptor subfamily 2, group F, member 2 (NR2F2) has been implicated in the development of breast cancer, however its contribution to insulin-induced EMT in breast cancer remains unclear. Methods Overexpression and knockdown of NR2F2 were used in two breast cancer cell lines, MCF-7 and MDA-MB-231 to investigate potential mechanisms by which NR2F2 leads to insulin-mediated EMT. To elucidate the effects of insulin and signaling events following NR2F2 overexpression and knockdown, Cells’ invasion and migration capacity and changes of NR2F2, E-cadherin, N-cadherin and vimentin were investigated by real-time RT-PCR and western blot. Results Insulin stimulation of these cells increased NR2F2 expression levels and promoted cell invasion and migration accompanied by alterations in EMT-related molecular markers. Overexpression of NR2F2 and NR2F2 knockdown demonstrated that NR2F2 expression was positively correlated with cell invasion, migration and the expression of N-cadherin and vimentin. In contrast, NR2F2 had an inverse correlation with E-cadherin expression. In MDA-MB-231, both insulin-induced cell invasion and migration and EMT-related marker alteration were abolished by NR2F2 knockdown. Conclusions These results suggest that NR2F2 plays a critical role in insulin-mediated breast cancer cell invasion, migration through its effect on EMT.
Metabonomic analysis has revealed eight metabolites with potential diagnostic values toward MAP, among which four metabolites can be used to monitor the disease course.
The failure of treatment for breast cancer usually results from distant metastasis in which the epithelial-mesenchymal transition (EMT) plays a critical role. Hyperinsulinemia, the hallmark of Type 2 diabetes mellitus (T2DM), has been regarded as a key risk factor for the progression of breast cancer. Nuclear receptor subfamily 2, group F member 2 (NR2F2) has been implicated in the development of breast cancer, however its contribution to insulin- induced EMT in breast cancer remains unclear. Overexpression and knockdown of NR2F2 was used in two breast cancer cell lines, MCF-7 and MDA-MB-231 to investigate potential mechanisms by which NR2F2 leads to insulin-mediated EMT. Insulin stimulation of these cells increased NR2F2 expression levels and promoted invasion and cell migration accompanied by alterations in EMT-related molecular markers. Overexpression of NR2F2 and NR2F2 knockdown demonstrated that NR2F2 expression was positively correlated with cell invasion, migration and the expression of N-cadherin and vimentin. In contrast,, NR2F2 had an inverse correlation with E-cadherin expression. In MDA-MB-231, both insulin-induced cell invasion and migration and EMT-related marker alteration were abolished by NR2F2 knockdown. These results suggest that NR2F2 plays a critical role in insulin-mediated breast cancer cell invasion, migration through its effect on EMT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.