Due to the ongoing depletion of fossil energy, alternative energy-sources and their respective conversion technologies have become very essential. An inexhaustible and clean energy form, which is already widely used, is solar energy. However, despite much progress in recent decades, due to the limitations of materials and manufacturing technology, the ability of solar cells to convert light into electrical energy is still not very high. Enhancing light absorption and reducing electric loss are the keys to improving the overall conversion efficiency of solar cells and reducing raw material costs. The former can be achieved by using micro/nanostructures and other surface features, while the latter can be realized by surface passivation. Researchers have developed different silicon-surface texturing methods to fabricate random or periodic micro/nanostructures on the surface of silicon wafers. Thanks to the special and efficient light-trapping effects of silicon micro/nanostructures, both full angle and wideband light absorption can be achieved. Different passivation methods and materials have also been widely studied, which helps to improve the surface recombination of photogenerated carriers caused by light trapping structure and significantly enhance the power conversion efficiency of Si solar cells. In this work, theoretical studies of enhanced light-trapping in micro/nanostructures are introduced. In addition, several advanced methods for preparing micro/nanostructures on the surface of monocrystalline silicon are discussed. These can be classified as top-down and bottom-up approaches. Furthermore, passivation methods for micro/nanostructures on the surface of monocrystalline silicon solar cells are reviewed, including chemical passivation and field-effect passivation. Finally, advantages and disadvantages of the micro/nanostructure preparation technologies, and light-trapping effects of the micro/nanostructures, which were fabricated using these manufacturing technologies were summarized. Moreover, the effects of different passivation technologies on the optical properties and electrical properties of these micro/nanostructures are studied. An outlook of expected and emerging research directions for monocrystalline silicon solar cells concludes this study.
Integrated circuits and optoelectronics are currently dominated by silicon technology. However, silicon’s response wavelength is typically less than 1,100 nm, limiting the application of silicon in machine vision, autonomous vehicles, and night vision. For infrared photodetectors, HgTe colloidal quantum dots (CQDs) are promising materials. Because of the adjustable bandgap, it responds over a wide spectral range. However, the construction of a high-quality junction between Si and HgTe CQDs continues to be difficult, thus restricting the scope of its application. In this article, we describe the synthesis, characterization, and correlation of HgTe CQDs with reaction temperature and nanocrystal size. We then fabricated HgTe-CQDs/silicon infrared photodiodes and discussed how the silicon resistivity affected their performance. We found that the devices prepared from 9.1 nm HgTe quantum dots synthesized at 80°C and a silicon substrate with a resistivity of 20–50 Ω·cm has optimal performance parameters. This results in a responsivity of 0.2 mA/W for 1,550 nm incident light at room temperature. These results provide a direction for future silicon-compatible HgTe quantum dot infrared optoelectronics.
By the photodetector manufactured using traditional semiconductor materials, such as HgCdTe and InGaAs, it is difficult to broaden the application range of such photodetectors due to their high cost and complex manufacturing process. PbSe colloidal quantum dots (CQDs) have the potential to shift the working range of photodetector from visible to infrared wavelength region, and it also has high photoresponsivity. Herein, we report the characterization of PbSe CQDs synthesized using a facile solution process, as well as the relationship between the size of nanocrystal and the reaction temperature. The films of PbSe CQDs are deposited using the layer-by-layer (LbL) spin-coating method, which is then used to fabricate the photoconductive device. The fabricated device is found to have an efficient response in a broad spectrum range of 400-2600 nm. The device maintains good responsivity of ~320 mA/W at room temperature. Its external quantum efficiency was quite high in the shorter wavelength infrared region, and it has approximately 14% external quantum efficiency (EQE) at 2520 nm. The device demonstrated excellent performance, confirming that PbSe colloidal quantum dots is a promising material for future broadband spectrum photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.