The excited state dynamics of aromatic hydrocarbon has attracted a great deal of attention due to its important role in photophysics and atmosphere chemistry. With the benefit of ultra-short laser pulses, the ultrafast phenomenon can be studied in a time resolved way. In the present work, m-dichlorobenzene, a typical model of aromatic hydrocarbon, is investigated by the femtosecond time resolved time-of-flight mass spectroscopy. In order to reveal its excited state dynamics, m-dichlorobenzene is pumped to the excited state after absorbing one 200/267 nm photon, and then ionized by absorbing 800 nm photons. Time resolved mass spectra are recorded with time of flight. At 200 nm, m-dichlorobenzene is excited to a (, *) state. Three decay components are observed in the transient profiles of m-dichlorobenzene ions, which correspond to three competition channels in the excited states. The first channel is an ultrafast dissociation process via a repulsive state with (n, *) or (, *) character, and the lifetime is (0.150.01) ps. The second channel is an internal conversion process from the populated excited state to the hot ground state, and the lifetime of the redistribution of the internal vibration in the hot ground state is (4.940.08) ps. The third channel is an intersystem crossing process to the triplet state, and the lifetime is (110.094.33) ps. Moreover, the transient profiles of C6H4Cl+/C6H4+ display similar decay tendencies to the transient profile of parent ion, except that longer lifetime constants ((127.3829.29) ps for C6H4Cl+, and (123.7637.12) ps for C6H4+, respectively) are observed. It is likely that the fragment ions result from the dissociative ionization of the parent molecule. At 267 nm, m-dichlorobenzene is excited to the first excited state with (n, *) character. Only C6H4Cl2+ and C6H4Cl+ are observed in the two-color mass spectrum. A slow decay component (~(1.060.05) ns) is obtained for both the parent ion and the fragment ion. It is attributed to an intersystem crossing process from the first excited state S1 to the triplet state T1. Furthermore, the transient profile of C6H4Cl+ displays other decay components, i.e., (2.480.09) ps, in addition to the slow decay component. This fast decay process can be attributed to an internal conversion process from the populated excited states to the hot ground states. The present study provides a more in-depth understanding of the ultrafast excited state dynamics of m-dichlorobenzene.
The dissociation and photoionization dynamics of C3H5Cl were studied at 200, 400, and 800 nm with femtosecond laser pulses. The time-of-flight mass spectra, laser power index and photoelectron images were recorded. At short wavelength (200 nm), ionization of the parent molecule was found to be the dominant channel, while other ions were generated by the dissociation of C3H5Cl +. With the shift to long wavelength (e.g., 800 nm), fragment ions became dominant, and were generated through the multiphoton ionization of neutral fragments after the photodissociation of C3H5Cl. These results imply that photodissociation plays a significant role at long wavelength, because neutral fragments are supposed to be generated from the intermediate states reached by 800 nm photons. At 400 nm, the dissociation on the intermediate states is also critical, but is not as high as that at 800 nm. Taken together, our results demonstrate that the dissociation/ ionization behaviors of allyl chloride are wavelength-dependent, and reveal the complex dynamics of allyl chloride at 200, 400 and 800 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.