Sodium (Na) metal has shown great promise as an anode material for the next-generation energy storage systems because of its high theoretical capacity, low cost, and high earth abundance. However, the extremely high reactivity of Na metal with organic electrolyte leads to the formation of unstable solid electrolyte interphase (SEI) and growth of Na dendrites upon repeated electrochemical stripping/plating, causing poor cycling performance, and serious safety issues. Herein, we present highly stable and dendrite-free Na metal anodes over a wide current range and long-term cycling via directly applying free-standing graphene films with tunable thickness on Na metal surface. We systematically investigate the dependence of Na anode stability on the thickness of the graphene film at different current densities and capacities. Our findings reveal that only a few nanometer (∼2-3 nm) differences in the graphene thickness can have decisive influence on the stability and rate capability of Na anodes. To achieve the optimal performance, the thickness of the graphene film covered on Na surface needs to be meticulously selected based on the applied current density. We demonstrate that with a multilayer graphene film (∼5 nm in thickness) as a protective layer, stable Na cycling behavior was first achieved in carbonate electrolyte without any additives over 100 cycles at a current density as high as 2 mA/cm with a high capacity of 3 mAh/cm. We believe our work could be a viable route toward high-energy Na battery systems, and can provide valuable insights into the lithium batteries as well.
Research on two-dimensional (2D) materials has been explosively increasing in last seventeen years in varying subjects including condensed matter physics, electronic engineering, materials science, and chemistry since the mechanical exfoliation of graphene in 2004. Starting from graphene, 2D materials now have become a big family with numerous members and diverse categories. The unique structural features and physicochemical properties of 2D materials make them one class of the most appealing candidates for a wide range of potential applications.In particular, we have seen some major breakthroughs made in the field of 2D materials in last five years not only in developing novel synthetic methods and exploring new structures/properties but also in identifying innovative applications and pushing forward commercialisation. In this review, we provide a critical summary on the recent progress made in the field of 2D materials with a particular focus on last five years. After a brief background 物理化学学报 Acta Phys. -Chim. Sin. 2021, 37 (12), 2108017 (3 of 151) introduction, we first discuss the major synthetic methods for 2D materials, including the mechanical exfoliation, liquid exfoliation, vapor phase deposition, and wet-chemical synthesis as well as phase engineering of 2D materials belonging to the field of phase engineering of nanomaterials (PEN). We then introduce the superconducting/optical/magnetic properties and chirality of 2D materials along with newly emerging magic angle 2D superlattices. Following that, the promising applications of 2D materials in electronics, optoelectronics, catalysis, energy storage, solar cells, biomedicine, sensors, environments, etc. are described sequentially. Thereafter, we present the theoretic calculations and simulations of 2D materials. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future outlooks in this rapidly developing field.
A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm·g at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m·K, which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.
Sodium (Na) metal is the most promising alternative for lithium metal as anode for the next-generation energy storage systems. However, its practical implementation is hindered by the huge volume change and severe Na metal dendrite growth during electrochemical stripping/plating. Herein, the use of a chemically engineered porous copper (Cu) matrix as a stable host for metallic Na anode is presented. By treating the commercial Cu foam through a facile and cost-effective method, a composite matrix consists of cylindrical coreshell skeleton is achieved, facilitating uniform impregnation and confinement of Na within the matrix pores promoted by the chemical interaction between Na and the matrix. The unique matrix's surface characteristic can divert the Na deposition from the skeleton towards the Na reservoirs within the pores, suppressing the volume change and mossy/dendritic Na growth. A stable Na cycling behavior is demonstrated in carbonate electrolyte without any additives at a high capacity up to 3 mAh cm −2 with a current density up to 2 mA cm −2 . Moreover, electrochemical measurements of a full cell made of the Na composite matrix anode clearly reveal the superior performance at high rate (5C) over that using bare Na metal.
Pt(3)Ni alloy nanoparticle networks (Pt(3)Ni NN) were prepared through a simple one-step room-temperature synthetic method. The as-prepared Pt(3)Ni NN exhibited markedly improved activity for both oxygen reduction reaction and electrocatalytic oxidation of small organic molecules over the Pt nanoparticle networks (Pt NN) and commercially available Pt/C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.