Maintaining cellular Na(+)/K(+) homeostasis is pivotal for plant survival in saline environments. However, knowledge about the molecular regulatory mechanisms of Na(+)/K(+) homeostasis in plants under salt stress is largely lacking. In this report, the Arabidopsis double mutants atrbohD1/F1 and atrbohD2/F2, in which the AtrbohD and AtrbohF genes are disrupted and generation of reactive oxygen species (ROS) is pronouncedly inhibited, were found to be much more sensitive to NaCl treatments than wild-type (WT) and the single null mutant atrbohD1 and atrbohF1 plants. Furthermore, the two double mutant seedlings had significantly higher Na(+) contents, lower K(+) contents, and resultant greater Na(+)/K(+) ratios than the WT, atrbohD1, and atrbohF1 under salt stress. Exogenous H(2)O(2) can partially reverse the increased effects of NaCl on Na(+)/K(+) ratios in the double mutant plants. Pre-treatments with diphenylene iodonium chloride, a widely used inhibitor of NADPH oxidase, clearly enhanced the Na(+)/K(+) ratios in WT seedlings under salt stress. Moreover, NaCl-inhibited inward K(+) currents were arrested, and NaCl-promoted increases in cytosolic Ca(2+) and plasma membrane Ca(2+) influx currents were markedly attenuated in atrbohD1/F1 plants. No significant differences in the sensitivity to osmotic or oxidative stress among the WT, atrbohD1, atrbohF1, atrbohD1/F1, and atrbohD2/F2 were observed. Taken together, these results strongly suggest that ROS produced by both AtrbohD and AtrbohF function as signal molecules to regulate Na(+)/K(+) homeostasis, thus improving the salt tolerance of Arabidopsis.
Panicle size is a critical determinant of grain yield in rice () and other grain crops. During rice growth and development, spikelet abortion often occurs at either the top or the basal part of the panicle under unfavorable conditions, causing a reduction in fertile spikelet number and thus grain yield. In this study, we report the isolation and functional characterization of a panicle abortion mutant named (). exhibits degeneration of spikelets on the apical portion of panicles during late stage of panicle development. Cellular and physiological analyses revealed that the apical spikelets in the mutant undergo programmed cell death, accompanied by nuclear DNA fragmentation and accumulation of higher levels of HO and malondialdehyde. Molecular cloning revealed that harbors a mutation in, which encodes a putative aluminum-activated malate transporter (OsALMT7) localized to the plasma membrane, and is preferentially expressed in the vascular tissues of developing panicles. Consistent with a function for OsALMT7 as a malate transporter, the panicle of the mutant contained less malate than the wild type, particularly at the apical portions, and injection of malate into the panicle could alleviate the spikelet degeneration phenotype. Together, these results suggest that OsALMT7-mediated transport of malate into the apical portion of panicle is required for normal panicle development, thus highlighting a key role of malate in maintaining the sink size and grain yield in rice and probably other grain crops.
Asthenozoospermia is a common cause of male infertility, but its etiology remains incompletely understood. We recruited three Pakistani infertile brothers, born to first-cousin parents, displaying idiopathic asthenozoospermia but no ciliary-related symptoms. Whole-exome sequencing identified a missense variant (c.G5408A, p.C1803Y) in DNAH17, a functionally uncharacterized gene, recessively cosegregating with asthenozoospermia in the family. DNAH17, specifically expressed in testes, was localized to sperm flagella, and the mutation did not alter its localization. However, spermatozoa of all three patients showed higher frequencies of microtubule doublet(s) 4–7 missing at principal piece and end piece than in controls. Mice carrying a homozygous mutation (Dnah17M/M) equivalent to that in patients recapitulated the defects in patients’ sperm tails. Further examinations revealed that the doublets 4–7 were destabilized largely due to the storage of sperm in epididymis. Altogether, we first report that a homozygous DNAH17 missense variant specifically induces doublets 4–7 destabilization and consequently causes asthenozoospermia, providing a novel marker for genetic counseling and diagnosis of male infertility.
Ophiocordyceps sinensis (Berk.) is an entomopathogenic fungus endemic to the Qinghai-Tibet Plateau. It parasitizes and mummifies the underground ghost moth larvae, then produces a fruiting body. The fungus-insect complex, called Chinese cordyceps or "DongChongXiaCao", is not only a valuable traditional Chinese medicine, but also a major source of income for numerous Himalayan residents. Here, taking advantage of rapid advances in single-molecule sequencing, we assembled a highly contiguous genome assembly of O. sinensis. The assembly of 23 contigs was ∼ 110.8 Mb with a N50 length of 18.2 Mb. We used RNA-seq and homologous protein sequences to identify 8916 protein-coding genes in the IOZ07 assembly. Moreover, 63 secondary metabolite gene clusters were identified in the improved assembly. The improved assembly and genome features described in this study will further inform the evolutionary study and resource utilization of Chinese cordyceps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.