The influence of hydrogen bonding on the solubility of carbazole and anthracene in N,N-dimethylformamide (DMF) and isopropanolamine (IPA) is investigated accordingly by 1 H nuclear magnetic resonance (NMR) analysis. The chemical shift for the free and hydrogen-bonding proton of the anthracene and carbazole solution in DMF, IPA, and the mixture of the two was collected by a 600 MHz 1 H NMR spectrometer. It is proposed that DMF, IPA, and a mixture of the two would be able to efficiently refine carbazole from crude anthracene oil. This phenomenon is shown to be the result of the intermolecular hydrogen bond of N−H···O and N−H···N formed between carbazole and the DMF/IPA mixture solvent, which greatly enhanced the solubility of carbazole in DMF and IPA. The arising steric hindrance effects derived from the intermolecular hydrogen bonding between DMF and IPA result in the significant solubility decline of anthracene and carbazole in the DMF and IPA mixture.
In recent years, biopolymers are highly desired for their application in optic electronic devices, because of their unique structure and fantastic characteristics. In this work, a non-volatile memory (NVM) device based on the bio thin-film transistor (TFT) was fabricated through applying a new RNA-CTMA (cetyltrimethylammonium) complex as a gate dielectric. The physicochemical performance, including UV, CD spectral, thermal stability, surface roughness, and microstructure, has been investigated systematically. The RNA-CTMA complex film exhibits strong absorption with a well-defined absorption peak around 260 nm, the RMS roughness is~2.1 nm, and displayed excellent thermal stability, up to 240 • C. In addition, the RNA-CTMA complex-based memory device shows good electric performance, with a large memory window up to 52 V. This demonstrates that the RNA-CTMA complex is a promising candidate for low cost, low-temperature processes, and as an environmentally friendly electronic device.
A key issue to upgrade the luminosity of the Tevatron Run2 program and to meet the neutrino requirement of the NuMI experiment at Fermilab is to increase the proton intensity on the target. This paper introduces a new scheme to double the number of protons from the Main Injector (MI) to the pbar production target (Run2) and to the pion production target (NuMI). It is based on the fact that the MI momentum acceptance is about a factor of four larger than the momentum spread of the Booster beam. Two RF barriers -one fixed, another moving -are employed to confine the proton beam. The Booster beams are injected off-momentum into the MI and are continuously reflected and compressed by the two barriers. Calculations and simulations show that this scheme could work provided that the Booster beam momentum spread can be kept under control. Compared with slip stacking, a main advantage of this new method is small beam loading effect thanks to the low peak beam current. The RF barriers can be generated by an inductive device, which uses nanocrystal magnet alloy (Finemet) cores and fast high voltage MOSFET switches. This device has been designed and fabricated by a Fermilab-KEK-Caltech team. The first bench test was successful. Beam experiments are being planned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.