This paper reports the novel results on fractional order-induced bifurcation of a tri-neuron fractional-order neural network (FONN) with delays and instantaneous self-connections by the intersection of implicit function curves to solve the bifurcation critical point. Firstly, it considers the distribution of the root of the characteristic equation in depth. Subsequently, it views fractional order as the bifurcation parameter and establishes the transversal condition and stability interval. The main novelties of this paper are to systematically analyze the order as a bifurcation parameter and concretely establish the order critical value through an implicit function array, which is a novel idea to solve the critical value. The derived results exhibit that once the value of the fractional order is greater than the bifurcation critical value, the stability of the system will be smashed and Hopf bifurcation will emerge. Ultimately, the validity of the developed key fruits is elucidated via two numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.