Most retinoic acid (RA) in the embryonic mouse is generated by three retinaldehyde dehydrogenases (RALDHs). RALDH1 (also called E1, AHD2 or ALDH1) is expressed in the dorsal retina, and RALDH2 (V2, ALDH11) generates most RA in the embryonic trunk. The third one, RALDH3 (V1), synthesizes the bulk of RA in the head of the early embryo. We show here that RALDH3 is a mouse homologue to ALDH6, an aldehyde dehydrogenase cloned from adult human salivary gland (Hsu, L.C., Chang, W.-C., Hiraoka, L., Hsien, C.-L., 1994. Molecular cloning, genomic organization, and chromosomal localization of an additional human aldehyde dehydrogenase gene, ALDH6. Genomics 24, 333-341), which was recently reported to act as a RALDH (Yoshida, A., Rzhetsky, A., Hsu, L.C., Chang, C., 1998. Human aldehyde dehydrogenase gene family. Eur. J. Biochem. 251, 549-557). RALDH3 expression begins in the surface ectoderm over the optic recess. In rapidly changing expression patterns it labels the appearance of several ectodermal structures: it marks the formation of the lens and the olfactory organ from ectodermal placodes, and it delineates the beginning eyelid field. Within the optic vesicle, RALDH3 is expressed in the ventral retina and the dorsal pigment epithelium. In the telencephalon, RALDH3 is expressed at high levels in the lateral part of the ganglionic eminence. From here it extends via the piriform cortex into the lower part of the septum. Of the three RALDHs, RALDH3 shows the strongest predilection for epithelia.