Hepatocellular carcinoma (HCC), among the most common malignancies worldwide, remains a major threat to public health, and there is an urgent need to identify novel biomarkers for diagnosis, prognosis and targets for anti-cancer treatment. In this study, two-dimensional polyacrylamide gel electrophoresis coupled with ESI-Q-TOF MS/MS analysis was used to identify differentially expressed proteins among the HCC tumour centre, tumour margin and nontumourous liver tissues. In total, 52 spots with significant alteration were positively identified byMS/MSanalysis. Altered expression of representative proteins, including CIB1, was validated by Western blotting. Immunostaining suggested an increase tendency of CIB1 expression from nontumourous liver tissue to tumour centre. Knockdown of CIB1 expression by RNA interference led to the significant suppression of the cell growth in hepatoma HepG2 cells. These data suggest that CIB1 may be used as a novel prognostic factor and possibly an attractive therapeutic target for HCC.
The research and development of extracorporeal bioartificial liver is gaining pace in recent years with the introduction of a myriad of optimally designed bioreactors with the ability to maintain long-term viability and liver-specific functions of hepatocytes. The design considerations for bioartificial liver are not trivial; it needs to consider factors such as the types of cell to be cultured in the bioreactor, the bioreactor configuration, the magnitude of fluid-induced shear stress, nutrients' supply, and wastes' removal, and other relevant issues before the bioreactor is ready for testing. This review discusses the exciting development of bioartificial liver devices, particularly the various types of cell used in current reactor designs, the state-of-the-art culturing and cryopreservation techniques, and the comparison among many today's bioreactor configurations. This review will also discuss in depth the importance of maintaining optimal mass transfer of nutrients and oxygen partial pressure in the bioreactor system. Finally, this review will discuss the commercially available bioreactors that are currently undergoing preclinical and clinical trials.
A myriad of bioreactor configurations have been investigated as extracorporeal medical support systems for temporary replacement of vital organ functions. In recent years, studies have demonstrated that the rotating bioreactors have the potential to be utilized as bioartificial liver assist devices (BLADs) owing to their advantage of ease of scalability of cell-culture volume. However, the fluid movement in the rotating chamber will expose the suspended cells to unwanted flow structures with abnormally high shear conditions that may result in poor cell stability and in turn lower the efficacy of the bioreactor system. In this study, we compared the hydrodynamic performance of our modified rotating bioreactor design with that of an existing rotating bioreactor design. Computational fluid dynamic analysis coupled with experimental results were employed in the optimization process for the development of the modified bioreactor design. Our simulation results showed that the modified bioreactor had lower fluid induced shear stresses and more uniform flow conditions within its rotating chamber than the conventional design. Experimental results revealed that the cells within the modified bioreactor also exhibited better cell-carrier attachment, higher metabolic activity, and cell viability compared to those in the conventional design. In conclusion, this study was able to provide important insights into the flow physics within the rotating bioreactors, and help enhanced the hydrodynamic performance of an existing rotating bioreactor for BLAD applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.