Atmospheric rivers (ARs) have significant hydrometeorological impacts on the U.S. West Coast. This study presents the connection between the characteristics of large-scale Rossby wave breaking (RWB) over the eastern North Pacific and the regional-scale hydrological impacts associated with landfalling ARs on the U.S. West Coast (36°–49°N). ARs associated with RWB account for two-thirds of the landfalling AR events and >70% of total AR-precipitation in the winter season. The two regimes of RWB—anticyclonic wave breaking (AWB) and cyclonic wave breaking (CWB)—are associated with different directions of the vertically integrated water vapor transport (IVT). AWB-ARs impinge in a more westerly direction on the coast whereas CWB-ARs impinge in a more southwesterly direction. Most of the landfalling ARs along the northwestern coast of the United States (states of Washington and Oregon) are AWB-ARs. Because of their westerly impinging angles when compared to CWB-ARs, AWB-ARs arrive more orthogonally to the western Cascades and more efficiently transform water vapor into precipitation through orographic lift than CWB-ARs. Consequently, AWB-ARs are associated with the most extreme streamflows in the region. Along the southwest coast of the United States (California), the southwesterly impinging angles of CWB-ARs are more orthogonal to the local topography. Furthermore, the southwest coast CWB-ARs have more intense IVT. Consequently, CWB-ARs are associated with the most intense precipitation. As a result, most of the extreme streamflows in southwest coastal basins are associated with CWB-ARs. In summary, depending on the associated RWB type, ARs impinge on the local topography at a different angle and have a different spatial signature of precipitation and streamflow.
The Weather Research Forecast (WRF) regional atmospheric model with water vapor tracer diagnostics (WRF-WVT) is used to quantify the water vapor from different oceanic and terrestrial regions that contribute to precipitation during the North American Monsoon (NAM) season. The 10-year (2004-2013) June-October simulations with 20km horizontal resolution were driven by North American Regional Reanalysis data. Results show that lower-level moisture comes predominantly from the Gulf of California and is the most important source of precipitation. Upper-level (above 800 mb) southeasterly moisture originates from the Gulf of Mexico and Sierra Madre Occidental mountain chain to the east. Moisture from within the NAM region (local recycling) is the second most important precipitation source, as the local atmospheric moisture is very efficiently converted into precipitation. However, WRF-WVT, overestimates precipitation and evapotranspiration in the NAM region, particularly over the mountainous terrain.Direct comparisons with moisture source analysis using the extended Dynamic Recycling Model (DRM) reveal that the simple model fails to correctly "back-track" moisture in this region of strong vertical wind shear. Furthermore, the assumption of a well-mixed atmosphere causes the simple model to significantly underestimate local recycling. However, the direct comparison with WRF-WVT can be used to guide future DRM model improvements.
This work evaluates the oceanic and terrestrial moisture sources that contribute to North American monsoon (NAM) precipitation over a 30-yr period using the modified analytical dynamic recycling model. This computationally efficient modeling framework reveals previously overlooked moisture source regions such as Central America and the Caribbean Sea in addition to the well-known Gulf of California and Gulf of Mexico source regions. The results show that terrestrial evapotranspiration is as important as oceanic evaporation for NAM precipitation, and terrestrial sources contribute to approximately 40% of monsoonal moisture. There is a northward progression of terrestrial moisture sources, beginning with Central America during the early season and transitioning north into northern Mexico and the NAM region itself during the peak of the monsoon season. The most intense precipitation occurs toward the end of the season and tends to originate in the Gulf of California and the tropical Pacific, associated with tropical cyclones and gulf surges. Heavy stable isotopes of hydrogen and oxygen in precipitation (δD and δ18O) collected for every precipitation event measured in Tucson, Arizona, for the period 1981–2008 complement the numerical results. The analysis shows that precipitation events linked to sources from the Gulf of Mexico and Caribbean Sea are more isotopically enriched than sources from the Gulf of California and tropical Pacific. It is also seen that terrestrial regions that derive their precipitation from the Gulf of Mexico are also more isotopically enriched than moisture sources from the Pacific.
Irrigation, while being an important anthropogenic factor affecting the local to regional water cycle, is not typically represented in regional climate models. An irrigation scheme is incorporated into the Noah land surface scheme of the Weather Research and Forecasting (WRF) Model that has a calibrated convective parameterization and a tracer package is used to tag and track water vapor. To assess the impact of irrigation over the California Central Valley (CCV) on the regional climate of the U.S. Southwest, simulations are run (for three dry and three wet years) both with and without the irrigation scheme. Incorporation of the irrigation scheme resulted in simulated surface air temperature and humidity that were closer to observations, decreased depth of the planetary boundary layer over the CCV, and increased convective available potential energy. The result was an overall increase in precipitation over the Sierra Nevada range and the Colorado River basin during the summer. Water vapor rising from the irrigated region mainly moved northeastward and contributed to precipitation in Nevada and Idaho. Specifically, the results indicate increased precipitation on the windward side of the Sierra Nevada and over the Colorado River basin. The former is possibly linked to a sea-breeze-type circulation near the CCV, while the latter is likely associated with a wave pattern related to latent heat release over the moisture transport belt.
Atmospheric rivers (ARs), narrow atmospheric water vapor corridors, can contribute substantially to winter precipitation in the semiarid Southwest U.S., where natural ecosystems and humans compete for over‐allocated water resources. We investigate the hydrologic impacts of 122 ARs that occurred in the Salt and Verde river basins in northeastern Arizona during the cold seasons from 1979 to 2009. We focus on the relationship between precipitation, snow water equivalent (SWE), soil moisture, and extreme flooding. During the cold season (October through March) ARs contribute an average of 25%/29% of total seasonal precipitation for the Salt/Verde river basins, respectively. However, they contribute disproportionately to total heavy precipitation and account for 64%/72% of extreme total daily precipitation (exceeding the 98th percentile). Excess precipitation during AR occurrences contributes to snow accumulation; on the other hand, warmer than normal temperatures during AR landfallings are linked to rain‐on‐snow processes, an increase in the basins' area contributing to runoff generation, and higher melting lines. Although not all AR events are linked to extreme flooding in the basins, they do account for larger runoff coefficients. On average, ARs generate 43% of the annual maximum flows for the period studied, with 25% of the events exceeding the 10 year return period. Our analysis shows that the devastating 1993 flooding event in the region was caused by AR events. These results illustrate the importance of AR activity on the hydrology of inland semiarid regions: ARs are critical for water resources, but they can also lead to extreme flooding that affects infrastructure and human activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.