Torreya grandis cv. Merrillii is an endemic tree species in China, seeds of which are used as a popular snack, possessing beneficial effects on preventing angiosclerosis and coronary heart diseases. In this study, antioxidant activity and chemical constituents of T. grandis cv. Merrillii seed (TGMS) were investigated. The antioxidant activity of different fractions and the ethanol extract was evaluated using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, hydroxyl radical scavenging activity and lipid peroxidation assays. The oil, CH 2 Cl 2 and n-BuOH fractions, and ethanol extract of TGMS all showed antioxidant activities in these models, especially the DPPH one. By GC-MS analysis, twenty-seven constituents were identified from the oil fraction of TGMS. The total content of phenolic compounds in the CH 2 Cl 2 and n-BuOH fractions and ethanol extract was also determined by the Folin-Ciocalteau method as 17.6, 21.6 and 12.9 μg/mg, respectively. In addition, analysis of the CH 2 Cl 2 fraction yielded four phenolic compounds: 4-hydroxybenzaldehyde, 4-methoxy pyrocatechol, coniferyl aldehyde, 4-hydroxy cinnamaldehyde, and two steroids, β-sitosterol and daucosterol. These results provide scientific support for the empirical use of TGMS as a medicinal food for cardiovascular diseases.
Antibody-dependent enhancement (ADE) is an event in preexisting sub-, or non-neutralizing antibodies increasing the viral replication in its target cells. ADE is one crucial factor that intensifies porcine reproductive and respiratory syndrome virus (PRRSV) infection and results in PRRSV-persistent infection. Nevertheless, the exact mechanisms of PRRSV-ADE infection are poorly understood. In the current research, the results of the ADE assay showed that porcine immunoglobulin G (IgG) specific for the PRRSV significantly enhanced PRRSV proliferation in porcine alveolar macrophages (PAMs), suggesting that the ADE activity of PRRSV infection existed in pig anti-PRRSV IgG. The results of the RNA interference assay showed that knockdown of the Fc gamma receptor I (FcγRI) or FcγRIII gene significantly suppressed the ADE activity of PRRSV infection in PAMs, suggesting that FcγRI and FcγRIII were responsible for mediating PRRSV-ADE infection. In addition, the results of the antibody blocking assay showed that specific blocking of the Sn1, 2, 3, 4, 5, or 6 extracellular domain of the sialoadhesin (Sn) protein or selective blockade of the scavenger receptor cysteine-rich (SRCR) 5 domain of the CD163 molecule significantly repressed the ADE activity of PRRSV infection in PAMs, suggesting that Sn and CD163 were involved in FcγR-mediated PRRSV-ADE infection. The Sn1–6 domains of porcine Sn protein and the SRCR 5 domain of porcine CD163 molecule might play central roles in the ADE of PRRSV infection. In summary, our studies indicated that activating FcγRs (FcγRI and FcγRIII) and viral receptors (Sn and CD163) were required for ADE of PRRSV infection. Our findings provided a new insight into PRRSV infection that could be enhanced by FcγRs and PRRSV receptors-mediated PRRSV-antibody immune complexes (ICs), which would deepen our understanding of the mechanisms of PRRSV-persistent infection via the ADE pathway.
Fc gamma receptor-mediated antibody-dependent enhancement (ADE) can promote virus invasion of target cells, sometimes exacerbating the severity of the disease. ADE may be an enormous hurdle to developing efficacious vaccines for certain human and animal viruses. ADE of porcine reproductive and respiratory syndrome virus (PRRSV) infection has been demonstrated in vivo and in vitro. However, the effect of PRRSV-ADE infection on the natural antiviral immunity of the host cells is yet to be well investigated. Specifically, whether the ADE of PRRSV infection affects the levels of type II (interferon-gamma, IFN-γ) and III (interferon-lambdas, IFN-λs) interferons (IFNs) remains unclear. In this study, our results showed that PRRSV significantly induced the secretion of IFN-γ, IFN-λ1, IFN-λ3, and IFN-λ4 in porcine alveolar macrophages (PAMs) in early infection, and weakly inhibited the production of IFN-γ, IFN-λ1, IFN-λ3, and IFN-λ4 in PAMs in late infection. Simultaneously, PRRSV infection significantly increased the transcription of interferon-stimulated gene 15 (ISG15), ISG56, and 2′, 5′-oligoadenylate synthetase 2 (OAS2) in PAMs. In addition, our results showed that PRRSV infection in PAMs via the ADE pathway not only significantly decreased the synthesis of IFN-γ, IFN-λ1, IFN-λ3, and IFN-λ4 but also significantly enhanced the generation of transforming growth factor-beta1 (TGF-β1). Our results also showed that the ADE of PRRSV infection significantly reduced the mRNAs of ISG15, ISG56, and OAS2 in PAMs. In conclusion, our studies indicated that PRRSV-ADE infection suppressed innate antiviral response by downregulating the levels of type II and III IFNs, hence facilitating viral replication in PAMs in vitro. The ADE mechanism demonstrated in the present study furthered our understanding of persistent pathogenesis following PRRSV infection mediated by antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.