Plasmonic reflectors based on serial stub structure are studied in this paper. A general theory of periodic stub structure using transmission line model is developed. The transmission characteristics, e.g., periodicity and symmetry of the spectra, are closely related to the ratio of structure period to stub length. Investigation reveals that the transmission valleys of the spectra could be divided into two categories, which is quite different from conventional Bragg reflectors. Finite-Difference Time-Domain (FDTD) method is used in numerical analysis in this paper.
HighlightThe Rolled and Erect Leaf 1 (REL1) gene is a novel component controlling brassinosteroid signalling-associated leaf morphogenesis and leaf angle in Oryza sativa.
We propose a discrete fractional random transform based on a generalization of the discrete fractional Fourier transform with an intrinsic randomness. Such discrete fractional random transform inheres excellent mathematical properties of the fractional Fourier transform along with some fantastic features of its own. As a primary application, the discrete fractional random transform has been used for image encryption and decryption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.