The aberrant activation of sonic hedgehog (SHH) pathway contributes to initiation and progression of various malignancies. However, the roles and underlying mechanisms of SHH signaling pathway in invasion and metastasis of liver cancer have not been well understood. In this study, we found that SHH signaling was activated and correlated with invasion and metastasis in hepatocellular carcinoma (HCC). Enhanced SHH signaling by recombinant human SHH N-terminal peptide (rSHH-N) promoted hepatoma cell adhesion, migration and invasion, whereas blockade of SHH signaling with SHH neutralizing antibody or cyclopamine suppressed hepatoma cell adhesion, migration and invasion. Furthermore, matrix metalloproteinase (MMP)-2 and MMP-9 expressions and activities were upregulated and downregulated by rSHH-N and SHH signaling inhibitor, respectively. The rSHH-N-mediated hepatoma cell migration and invasion was blocked by MMP-specific inhibitors or neutralizing antibodies to MMP-2 and MMP-9. In addition, phosphorylations of AKT and focal adhesion kinase (FAK) were increased and decreased by rSHH-N and SHH signaling inhibitor, respectively. Further investigations showed that activation of AKT and FAK were required for rSHH-N-mediated upregulation of MMP-2 and MMP-9, cell migration and invasion. Finally, we found that SHH protein expression was positively correlated with phosphorylatd FAK Tyr397, phosphorylatd AKT Ser473, MMP-2 and MMP-9 protein expressions in HCC samples. Taken together, our findings suggest that SHH pathway induces cell migration and invasion through FAK/AKT signaling-mediated MMP-2 and MMP-9 production and activation in liver cancer.
Adipose‐derived stem cells (ASC) are said to have a pivotal role in wound healing. Specifically, ASC‐secreted extracellular vesicles (EV) carry diverse cargos such as microRNAs (miRNAs) to participate in the ASC‐based therapies. Considering its effects, we aimed to investigate the role of ASC‐EVs in the cutaneous wound healing accompanied with the study on the specific cargo‐medicated effects on wound healing. Two full‐thickness excisional skin wounds were created on mouse dorsum, and wound healing was recorded at the indicated time points followed by histological analysis and immunofluorescence staining for CD31 and α‐SMA. Human skin fibroblasts (HSFs) and human microvascular endothelial cells (HMECs) were co‐cultured with EVs isolated from ASC (ASC‐EVs), respectively, followed by the evaluation of their viability and mobility using CCK‐8, scratch test and transwell migration assays. Matrigel‐based angiogenesis assays were performed to evaluate vessel‐like tube formation by HMECs in vitro. ASC‐EVs accelerated the healing of full‐thickness skin wounds, increased re‐epithelialization and reduced scar thickness whilst enhanced collagen synthesis and angiogenesis in murine models. However, miR‐486‐5p antagomir abrogated the ASC‐EVs‐induced effects. Intriguingly, miR‐486‐5p was found to be highly enriched in ASC‐EVs, exhibiting an increase in viability and mobility of HSFs and HMECs and enhanced the angiogenic activities of HMECs. Notably, we also demonstrated that ASC‐EVs‐secreted miR‐486‐5p achieved the aforesaid effects through its target gene Sp5. Hence, our results suggest that miR‐486‐5p released by ASC‐EVs could be a critical mediator to develop an ASC‐based therapeutic strategy for wound healing.
Based on the results of our meta-analysis, SSSA would appear to be the preferred procedure after ileocolic resection for CD, with reduced overall postoperative complications, especially anastomotic leak, and a decreased recurrence and re-operation rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.