A modified Taylor model, hereafter referred to as the MTCS (Mechanical-Twinning-with-Coplanar-Slip)-model, is proposed in the present work to predict weak texture components in the shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model considers two boundary conditions (i.e., twinning does not occur in previously twinned areas and coplanar slip occurs in the TML region) to simulate the rolling texture of Cu–30%Zn. In the first approximation, texture simulation using the MTCS-model revealed brass-type textures, including Y{1 1 1} <1 1 2> and Z{1 1 1} <1 1 0> components, which correspond to the observed experimental textures. Single orientations of C(1 1 2)[1¯ 1¯ 1] and S’(1 2 3)[4¯ 1¯ 2] were applied to the MTCS-model to understand the evolution of Y and Z components. For the Y orientation, the C orientation rotates toward T(5 5 2)[1 1 5] by twinning after 30% reduction and then toward Y(1 1 1)[1 1 2] by coplanar slip after over 30% reduction. For the Z orientation, the S’ orientation rotates toward T’(3 2 1)[2 1¯ 4¯] by twinning after 30% reduction and then toward Z(1 1 1)[1 0 1¯] by coplanar slip after over 30% reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.