Multimodal biometrics fusion plays an important role in the field of biometrics. Therefore, this paper presents a multimodal biometrics fusion algorithm using deep reinforcement learning. In order to reduce the influence of user behavior, user’s personal characteristics, and environmental light on image data quality, data preprocessing is realized through data transformation and single-mode biometric image region segmentation. A two-dimensional Gobar filter was used to analyze the texture of local sub-blocks, qualitatively describe the similarity between the filter and the sub-blocks and extract the phase information and local amplitude information of multimodal biometrics features. Deep reinforcement learning was used to construct the classifier of different modal biometrics, and the weighted sum fusion of different modal biometrics was implemented by fractional information. The multimodal biometrics fusion algorithm was designed. The Casia-iris-interval-v4 and NFBS datasets were used to test the performance of the proposed algorithm. The results show that the fused image quality is better, the feature extraction accuracy is between 84% and 93%, the average accuracy of feature classification is 97%, the multimodal biometric classification time is only 110 ms, the multimodal biometric fusion time is only 550 ms, the effect is good, and the practicability is strong.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.