We expose the predominant diffusional pathways for In and As in InAs, as well as dopant Si atoms in InAs, using Nudged Elastic Band calculations in conjunction with accurate Density Functional Theory calculations of the energy of defective systems. Our results show that As is a very fast diffuser compared to In and Si for both vacancy-assisted and interstitially mediated mechanisms. Larger indium atoms, on the other hand, are very slow diffusers and strongly prefer to remain on the In sublattice. Silicon also prefers to stay in substitutional sites in the In sublattice, in agreement with the fact that Si is used to create n-doped InAs. We find that the mechanism by which Si diffuses within the InAs lattice is very unlikely to proceed via vacancy-assisted jumps, since these routes encounter energy barriers above 2 eV. In contrast, silicon can readily make interstitial jumps since they occur with energy barriers as small as 0.23 eV. This suggests that an interstitial diffusion mechanism is strongly preferred for Si diffusion in InAs which challenges the common presumption made for another similar III-V compound, namely GaAs, that Si diffusion takes place via a vacancy-assisted mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.