The present study establishes a stochastic adaptive robust dispatch model for virtual power plants (VPPs) to address the risks associated with uncertainties in electricity market prices and photovoltaic (PV) power outputs. The model consists of distributed components, such as the central air-conditioning system (CACS) and PV power plant, aggregated by the VPP. The uncertainty in the electricity market price is addressed using a stochastic programming approach, and the uncertainty in PV output is addressed using an adaptive robust approach. The model is decomposed into a master problem and a sub-problem using the binding scenario identification approach. The binding scenario subset is identified in the sub-problem, which greatly reduces the number of iterations required for solving the model, and thereby increases the computational efficiency. Finally, the validity of the VPP model and the solution algorithm is verified using a simulated case study. The simulation results demonstrate that the operating profit of a VPP with a CACS and other aggregated units can be increased effectively by participating in multiple market transactions. In addition, the results demonstrate that the binding scenario identification algorithm is accurate, and its computation time increases slowly with increasing scenario set size, so the approach is adaptable to large-scale scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.