Mining (classify or clustering) retrieval results to serve relevance feedback mechanism of search engine is an important solution to improve effectiveness of retrieval. Unlike plain text documents, since the XML documents are semi-structured data, for XML retrieval results classification, consider exploiting structure features of XML documents, such as tag paths and edges etc. We propose to use Support Vector Machine (SVM) classifier to classify XML retrieval results exploiting both their content and structure features. We implemented the classification method on XML retrieval results based on the IEEE SC corpus. Compared with k-nearest neighbor classification (KNN) on the same dataset in our application, SVM perform better. The experiment results have also shown that the use of structure features, especially tag paths and edges, can improve the classification performance significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.