In the field of pesticide spraying, droplet size is one of the most important factors affecting droplet deposition and drift. In order to study the effect of different droplet size parameters on droplet deposition distribution and drift of aerial spraying by using plant protection UAV, an aerial spraying test with the same spraying rate and different size droplets in rice canopy was carried out by using multi-rotor unmanned aerial vehicles (UAV) and four TEEJET nozzles with different orifice sizes (these droplets with a volume median diameter (VMD) of 95.21, 121.43, 147.28, and 185.09 μm, respectively), and the deposition distribution and penetration of droplets in the target area and the drift distribution of droplets in the non-target area were compared and analyzed. The results showed that the deposition distribution and penetration of droplets in the target area and the drift distribution of droplets in the non-target area were influenced by the droplet size. The droplet deposition rate in the upper and lower rice canopies were increased in the target area with the increase of droplet size. The penetration results of droplets also increased with the increase of droplet size, and that of droplets with a VMD of 185.09 μm was the best, reaching 38.13%. The average values of the cumulative drift rate of droplets in the rice canopy in the four tests were 73.87%, 50.26%, 35.91%, and 23.06%, respectively, and the cumulative drift rate and the drift distance of droplets decreased with the increase of droplet size, which indicated that the increase of droplet size can effectively reduce droplet drift. It demonstrated that the droplet size is one of the most important factors affecting droplet deposition and drift for pesticide spraying by plant protection UAV, and for the application of plant protection UAV with extra-low volume spraying, the use of droplets with VMD less than 160 μm should be avoided and a more than 10 m buffer zone should be considered downwind of the spraying field to avoid drug damage caused by pesticide drift. The results have fully revealed the effect of droplet size parameters on droplet deposition and drift of aerial spraying. Moreover, the influence of the wind field below the rotors on the distribution of droplet deposition was surmised and analyzed from the perspective of plant protection UAV. It is important for optimizing the droplet parameters of aerial spraying, increasing the spraying efficiency, and realizing precision agricultural aviation spray.
Previous studies have confirmed that choosing nozzles that produce coarser droplets could reduce the risk of pesticide spray drift, but this conclusion is based on a large volume of application, and it is easy to ignore how this impacts the control effect. The difference from the conventional spray is that the carrier volume of Unmanned Aerial Vehicle (UAV) is very limited. Little was known about how to choose suitable nozzles with UAV’s limited volume to ensure appropriate pest control. Droplet deposition with the addition of adjuvant and the LU110-010, LU110-015, and LU110-020 nozzles and control of planthoppers within nozzles treatments were studied by a quadrotor UAV in rice (Tillering and Flowering stages). Allura Red (10 g/L) was used as a tracer and Kromekote cards were used to collect droplet deposits. The results indicate that the density of the droplets covered by the LU110-01 nozzle is well above other treatments, while the differences in droplet deposition and coverage are not significant. The deposition and coverage were improved with the addition of adjuvant, especially in LU110-01 nozzles’ treatment. The control effects of rice planthoppers treated by LU110-01 nozzle were 89.4% and 90.8% respectively, which were much higher than 67.6% and 58.5% of LU110-020 nozzle at 7 days in the Tillering and Flowering stage. The results suggest that selecting a nozzle with a small atomizing particle size for UAV could improve the control effect of planthoppers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.