This paper proposes a zero-shot learning approach for audio classification based on the textual information about class labels without any audio samples from target classes. We propose an audio classification system built on the bilinear model, which takes audio feature embeddings and semantic class label embeddings as input, and measures the compatibility between an audio feature embedding and a class label embedding. We use VGGish to extract audio feature embeddings from audio recordings. We treat textual labels as semantic side information of audio classes, and use Word2Vec to generate class label embeddings. Results on the ESC-50 dataset show that the proposed system can perform zeroshot audio classification with small training dataset. It can achieve accuracy (26 % on average) better than random guess (10 %) on each audio category. Particularly, it reaches up to 39.7 % for the category of natural audio classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.