As the deep learning techniques have expanded to real-world recommendation tasks, many deep neural network based Collaborative Filtering (CF) models have been developed to project user-item interactions into latent feature space, based on various neural architectures, such as multi-layer perceptron, autoencoder, and graph neural networks. However, the majority of existing collaborative filtering systems are not well designed to handle missing data. Particularly, in order to inject the negative signals in the training phase, these solutions largely rely on negative sampling from unobserved user-item interactions and simply treating them as negative instances, which brings the recommendation performance degradation. To address the issues, we develop a C ollaborative R eflection-Augmented A utoencoder N etwork (CRANet), that is capable of exploring transferable knowledge from observed and unobserved user-item interactions. The network architecture of CRANet is formed of an integrative structure with a reflective receptor network and an information fusion autoencoder module, which endows our recommendation framework with the ability of encoding implicit user’s pairwise preference on both interacted and non-interacted items. Additionally, a parametric regularization-based tied-weight scheme is designed to perform robust joint training of the two-stage CRANetmodel. We finally experimentally validate CRANeton four diverse benchmark datasets corresponding to two recommendation tasks, to show that debiasing the negative signals of user-item interactions improves the performance as compared to various state-of-the-art recommendation techniques. Our source code is available at https://github.com/akaxlh/CRANet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.