Micro electrochemical machining is becoming increasingly important in the microfabrication of metal parts. In this paper, the machining characteristics of micro electrochemical milling with nanosecond pulse were studied. Firstly, a mathematical model for the localization control of micro electrochemical milling with nanosecond pulse was established. Secondly, groups of experiments were conducted on nickel-based superalloy and the effects of parameters such as applied voltage, pulse on time, pulse period, electrolyte concentration and electrode diameter on machining localization and surface roughness were analyzed. Finally, by using the optimized machining parameters, some 2D complex shapes and 3D square cavity structures with good shape precision and good surface quality were successfully obtained. It was proved that the micro electrochemical milling with nanosecond pulse technique is an effective machining method to fabricate metal microstructures.
Electrochemical grinding (ECG) technique composed of electrochemical machining (ECM) and mechanical grinding is a proper method for machining of difficult-to-cut alloys. This paper presents a new ultrasonic assisted electrochemical drill-grinding (UAECDG) technique which combines electrochemical drilling, mechanical grinding, and ultrasonic vibration to fabricating high-quality small holes on superalloy. By applying ultrasonic vibration to high-speed rotating electrode in ECG, machining stability, efficiency, and surface quality can be obviously improved. Firstly, the electrochemical passive behavior of superalloy is studied, the mathematical model and simulation of gap electric field are established. Then, several experiments are conducted to investigate the influence of applied voltage, feed rate and ultrasonic amplitude on the machining quality. The balance of material removal between electrochemical reaction and mechanical grinding is achieved by optimizing the machining parameters. It reveals that the surface quality as well as machining stability and efficiency can be significantly improved by applying rotating ultrasonic vibration to the ECG process. Finally, several small holes of high quality have been machined successfully along with surface roughness of hole sidewall decreases from Ra 0.99 μm to Ra 0.14 μm by UAECDG.
As one of the most promising micro-machining methods, electrochemical micro-machining is widely used in the field of metal micro-structures. The electrochemical micro-milling on Nickel-base superalloy by using high-speed spiral electrode was studied in detail. Firstly, the electric field and flow field models of micro-electrochemical milling are established and analyzed by the finite element method. Then, the milling profile was predicted and the effect of high-speed rotation of electrodes on electrolyte promotion and secondary electrolysis prevention were analyzed. Secondly, the influence of the main machining parameters, such as rotating speed, electrical parameters, and feed rate on machining precision and efficiency was analyzed experimentally. Finally, by optimizing the machining parameters, a series of micro-graphic structures with a width of about 150 μm were obtained on Nickel-base superalloy 718 by using the spiral electrode with a diameter of 100 μm. The experimental and simulation results show that the high-speed rotation of electrodes can greatly improve the machining efficiency and stability. It was proved that micro-electrochemical milling with the high-speed rotating electrode technique is an effective method for machining micro-metal parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.