In recent years, circular RNAs (circRNAs) have been identified to be essential regulators of various human cancers. However, knowledge of the functions of circRNAs in prostate cancer remains very limited. The correlation between circABCC4 and human cancer is largely unknown. This study aims to investigate the biological functions of circABCC4 in prostate cancer progression and illustrate the underlying mechanism. We found that circABCC4 was remarkably up‐regulated in prostate cancer tissues and cell lines and promoted FOXP4 expression by sponging miR‐1182 in prostate cancer cells. CircABCC4 knockdown markedly suppressed prostate cancer cell proliferation, cell‐cycle progression, migration and invasion in vitro. Furthermore, silencing of the circRNA also delayed tumor growth in vivo. Taken together, our findings indicated that circABCC4 facilitates the malignant behaviour of prostate cancer by promoting FOXP4 expression through sponging of miR‐1182. The circABCC4–miR‐1182‐FOXP4 regulatory loop may be a promising therapeutic target for prostate cancer intervention.
The expression pattern and detailed roles of long noncoding RNA LINC00511 in clear cell renal cell carcinoma (ccRCC) remain unknown. We measured LINC00511 expression in ccRCC. We clarified the clinical characteristics associated with LINC00511 in ccRCC. We examined the biological roles of LINC00511 in the progression of ccRCC, and we identified the potential mechanisms involved. LINC00511 was upregulated in ccRCC tissues and cell lines. High LINC00511 expression significantly correlated with TNM classification, lymph node metastasis, and short overall survival among patients with ccRCC. Additionally, LINC00511 knockdown restricted ccRCC cell proliferation, colony formation, and metastasis in vitro; accelerated cell cycle arrest at G0–G1 and apoptosis in vitro; and decreased tumor growth in vivo. Investigation of the mechanism revealed that LINC00511 directly interacted with microRNA-625 (miR-625), and the inhibitory effects of the LINC00511 knockdown on malignant characteristics were neutralized by miR-625 silencing. Furthermore, cyclin D1 (CCND1) was identified as a direct target of miR-625 in ccRCC cells. The tumor-suppressive activity of miR-625 upregulation on ccRCC cells was reversed by CCND1 reintroduction. In conclusion, LINC00511 serves as a competing endogenous RNA that regulates CCND1 expression by sponging miR-625 in ccRCC. Hence, the LINC00511/miR-625/CCND1 pathway might be a promising therapeutic target in ccRCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.