Optoelectronic‐neuromorphic transistors are vital for next‐generation nanoscale brain‐like computational systems. However, the hardware implementation of optoelectronic‐neuromorphic devices, which are based on conventional transistor architecture, faces serious challenges with respect to the synchronous processing of photoelectric information. This is because mono‐semiconductor material cannot absorb adequate light to ensure efficient light–matter interactions. In this work, a novel neuromorphic‐photoelectric device of vertical van der Waals heterojunction phototransistors based on a colloidal 0D‐CsPbBr3‐quantum‐dots/2D‐MoS2 heterojunction channel is proposed using a polymer ion gel electrolyte as the gate dielectric. A highly efficient photocarrier transport interface is established by introducing colloidal perovskite quantum dots with excellent light absorption capabilities on the 2D‐layered MoS2 semiconductor with strong carrier transport abilities. The device exhibits not only high photoresponsivity but also fundamental synaptic characteristics, such as excitatory postsynaptic current, paired‐pulse facilitation, dynamic temporal filter, and light‐tunable synaptic plasticity. More importantly, efficiency‐adjustable photoelectronic Pavlovian conditioning and photoelectronic hybrid neuronal coding behaviors can be successfully implemented using the optical and electrical synergy approach. The results suggest that the proposed device has potential for applications associated with next‐generation brain‐like photoelectronic human–computer interactions and cognitive systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.