RATIONALE: Bisphenol A and its alternatives are widely used in common consumer products and are known as environmental endocrine disrupting chemicals. Five bisphenol analogues, namely, tetrabromobisphenol A (TBBPA), tetrachlorobisphenol A (TCBPA), 4,4′-sulfonyldiphenol (BPS), bisphenol A (BPA) and 4,4′-hexafluoroisopropylidenediphenol (BPAF), were selected to study their interactions with serum albumins, aiming at a better understanding of the toxicological mechanisms of bisphenol compounds.
METHODS:The interactions between human and bovine serum albumins (HSA and BSA) with these five compounds were investigated by electrospray ionization mass spectrometry (ESI-MS). Fluorescence spectroscopy and molecular docking confirmed the ESI-MS observations and provided complementary information with respect to thermodynamic properties and binding modes. RESULTS: TBBPA showed the highest binding ability with HSA and BSA, followed by TBBPA and BPS, whereas BPA and BPAF exhibited little or no binding with these serum albumins. The calculated thermodynamic parameters suggested that hydrogen bonds and electrostatic forces played important roles for these interactions. Binding energies of TBBPA, TCBPA, and BPS calculated by molecular docking were À35.18, À34.39, and À25.89 kJ mol À1 , respectively, in good agreement with ESI-MS measurements. CONCLUSIONS: The results of this study showed that halogenated substituents on the phenolic rings of bisphenol could enhance the binding ability with serum albumins. This work could provide useful information for further research on the relationship between molecular structures and toxicities of bisphenols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.