Global nitrogen (N) enrichment has resulted in increased nitrous oxide (N(2)O) emission that greatly contributes to climate change and stratospheric ozone destruction, but little is known about the N(2)O emissions from urban river networks receiving anthropogenic N inputs. We examined N(2)O saturation and emission in the Shanghai city river network, covering 6300 km(2), over 27 months. The overall mean saturation and emission from 87 locations was 770% and 1.91 mg N(2)O-N m(-2) d(-1), respectively. Nitrous oxide (N(2)O) saturation did not exhibit a clear seasonality, but the temporal pattern was co-regulated by both water temperature and N loadings. Rivers draining through urban and suburban areas receiving more sewage N inputs had higher N(2)O saturation and emission than those in rural areas. Regression analysis indicated that water ammonium (NH(4)(+)) and dissolved oxygen (DO) level had great control on N(2)O production and were better predictors of N(2)O emission in urban watershed. About 0.29 Gg N(2)O-N yr(-1) N(2)O was emitted from the Shanghai river network annually, which was about 131% of IPCC's prediction using default emission values. Given the rapid progress of global urbanization, more study efforts, particularly on nitrification and its N(2)O yielding, are needed to better quantify the role of urban rivers in global riverine N(2)O emission.
Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge density wave, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to nonkagome surface layers. Here, we tunnel into the kagome lattice of FeGe to uncover features of the charge order. Our spectroscopic imaging identifies a 2 × 2 charge order in the magnetic kagome lattice, resembling that discovered in kagome superconductors. Spin mapping across steps of unit cell height demonstrates the existence of spin-polarized electrons with an antiferromagnetic stacking order. We further uncover the correlation between antiferromagnetism and charge order anisotropy, highlighting the unusual magnetic coupling of the charge order. Finally, we detect a pronounced edge state within the charge order energy gap, which is robust against the irregular shape fluctuations of the kagome lattice edges. We discuss our results with the theoretically considered topological features of the kagome charge order including unconventional magnetism and bulk-boundary correspondence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.