Despite learning based methods showing promising results in single view depth estimation and visual odometry, most existing approaches treat the tasks in a supervised manner. Recent approaches to single view depth estimation explore the possibility of learning without full supervision via minimizing photometric error. In this paper, we explore the use of stereo sequences for learning depth and visual odometry. The use of stereo sequences enables the use of both spatial (between left-right pairs) and temporal (forward backward) photometric warp error, and constrains the scene depth and camera motion to be in a common, realworld scale. At test time our framework is able to estimate single view depth and two-view odometry from a monocular sequence. We also show how we can improve on a standard photometric warp loss by considering a warp of deep features. We show through extensive experiments that: (i) jointly training for single view depth and visual odometry improves depth prediction because of the additional constraint imposed on depths and achieves competitive results for visual odometry; (ii) deep feature-based warping loss improves upon simple photometric warp loss for both single view depth estimation and visual odometry. Our method outperforms existing learning based methods on the KITTI driving dataset in both tasks. The source code is available at https://github.com/Huangying-Zhan/ Depth-VO-Feat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.