Background and aim:
The molecular signatures of lung adenocarcinoma (LUAD) are not well understood. Centromere protein F (CENPF) has been shown to promote oncogenesis in many cancers; however, its role in LUAD has not been illustrated. We explored the role of CENPF in LUAD.
Methods:
CENPF expression level was investigated in public online database firstly, the prognosis of CENPF in LUAD were also assessed by Kaplan-Meier analysis. Then quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed using 13 matched pairs of clinical LUAD tissue samples. Subsequently, the impact of CENPF expression on cell proliferation, cell cycle, apoptosis, colony formation was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), flow cytometric analysis and colony formation assay, respectively. Finally, experimental xenograft lung cancer model of nude mice armpit of right forelimb to determine the effect of CENPF on LUAD tumorigenesis.
Results:
CENPF mRNA expression was significantly elevated in LUAD tissues compared with adjacent non-tumor lung tissues in Gene Expression Profiling Interactive Analysis (GEPIA) (
P
< 0.001). Up-regulated CENPF was remarkably positively associated with pathological stage, relapse free survival (RFS) as well as overall survival (OS) of LUAD patients. Besides, CENPF knockdown greatly suppressed A549 cell proliferation, induced S phase arrest, promoted apoptosis and decreased colony numbers of LUAD cells. Furthermore, knockdown of CENPF significantly inhibited the tumor growth of the LUAD cells in an experimental xenograft lung cancer model of nude mice armpit of right forelimb.
Conclusion:
Taken together, these results demonstrated that CENPF may serve as a potential biomarker of prognostic relevance and a potential therapeutic target for LUAD.
The present study aimed to analyze the effects of acetylation-related lncRNAs in non-small-cell lung cancer (NSCLC). A total of 399 differentially expressed lncRNAs (DElncRNAs) have been identified between 497 NSCLC tissues and 54 normal tissues in the TCGA database, and 105 of which were correlated with acetylation regulators. By using univariate cox regression analysis and combining it with clinical prognosis information, 12 prognostic-related lncRNAs were selected for the subsequent analysis. The NSCLC patients were divided into two subgroups (cluster 1 and cluster 2) by clustering software, and immunocyte infiltration analysis, microenvironmental analysis, and clinical relevance analysis were performed between the two subgroups. A risk model was also built to further assess the prognosis value of prognostic-related lncRNAs in NSCLC patients. We found that AC099850.3 was significantly higher in both cluster 1 and high-risk subgroups, which may serve as a potential biomarker for the prognosis of NSCLC patients. Then, based on ceRNA competition mechanisms, the pathway enrichment of 105 acetylation-related lncRNAs was conducted by GO and KEGG analyses. We found the acetylation-related lncRNAs were primarily enriched in MAPK and EGFR signaling pathways, which were closely associated with NSCLC development. Finally, we validated the expression levels of AC099850.3 in NSCLC tissues and adjacent non-cancerous tissues and confirmed that AC099850.3 was significantly highly expressed in NSCLC tissues and cells. These results may provide clues for our understanding of the role of acetylation-related lncRNAs and valuable information for future clinical diagnosis and prognosis in NSCLC patients.
N6-methyladenosine (m6A) is one of the most prevalent epigenetic modifications of eukaryotic RNA. The m6A modification is a dynamic and reversible process, regulated by three kinds of regulator, including m6A methyltransferases, demethylases and m6A-binding proteins, and this modification plays a vital role in many diseases, especially in cancers. Accumulated evidence has proven that this modification has a significant effect on cellular biological functions and cancer progression; however, little is known about the effects of the m6A modification in non-small cell lung cancer (NSCLC). In this review, we summarized how various m6A regulators modulate m6A RNA metabolism and demonstrated the effect of m6A modification on the progression and cellular biological functions of NSCLC. We also discussed how m6A modification affects the treatment, drug resistance, diagnosis and prognosis of NSCLC patients.
Background The Traditional Chinese Medicine (TCM) Qi-supplementing therapy has been used widely for treating myasthenia gravis (MG) in China. The purpose of this meta-analysis was to evaluate the efficacy and safety of Qi-supplementing therapy as an adjunctive therapy in MG patients. Methods Seven electronic databases were searched through June 2016. Randomized controlled trials (RCTs) evaluating the add-on effect of Qi-supplementing therapy in MG patients were included. The outcome measures were the total effective rate, relapse rate, and adverse events. Results Twenty-three RCTs involving 1,691 MG patients were included. The included studies were of low-to-moderate quality. Meta-analysis showed that Qi-supplementing therapy combined with Western medicine (WM) significantly improved the total response rate and reduced the relapse risk during 6–24 months of follow-up. Subgroup analysis showed that Qi-supplementing therapy only affected the total response rate within the first 6 months of treatment. Moreover, the rate of adverse events was lower with the addition of Qi-supplementing therapy to WM than with WM only. Conclusions Short-term Qi-supplementing therapy combined with WM appears to be superior to WM for improving the total response rate and reducing the relapse rate. However, more high-quality RCTs are warranted owing to methodological flaws of previous trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.