In this paper, we report a sequential-phase fed broadband circularly polarized array antenna loaded with an artificial magnetic conductor-reflecting surface. Our proposed antenna is a two-part group. The upper structure is a sequential-phase fed circular wide-slot antenna. The lower part is an artificial magnetic conductor structured reflective surface. The overall antenna size is 106 × 106 × 14.9 mm3, both adopting 1.6 mm thick FR4 material. The thickness of the air layer sandwiched between the antenna and the artificial magnetic conductor reflective surface is 14 mm. The antenna consists of four circular wide-slot antenna units with a sequential rotation technique. To broaden the axial ratio bandwidth, three L-shaped branches and four metal plates are attached to the circular wide-slot antenna unit and around the artificial magnetic conductor-reflecting surface, respectively. To verify the accuracy of the simulation, we fabricated the sample and then tested it in an anechoic chamber. The measured results demonstrate that the proposed broadband circularly polarized array antenna realizes an impedance bandwidth of 77.67% (2.74–6.22 GHz) and an axial ratio bandwidth of 65.16% (3.00–5.90 GHz) with a peak gain of 11.1 dBi. The design can be used in space-constrained environments, such as indoor and dense building areas.
In this paper, we propose a wideband linear polarizer that utilizes metamaterial and metasurface techniques to achieve highly efficient polarization conversion. The proposed polarizer achieves a polarization conversion ratio exceeding 90% at 12.0-16.0 GHz, as confirmed by both simulated and experimental results. The effects of geometric parameters, incidence angle, and polarization angle on the performance of the polarizer are analyzed, and it is demonstrated that the polarizer maintains an extremely high polarization conversion efficiency even under wide-angle incidence. The polarization conversion mechanism is elucidated through the examination of eigenmode and surface current distribution. This work holds significant promise for the control of electromagnetic waves, making it essential for upcoming engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.