Understanding the mechanism of protective antibody recognition against highly pathogenic avian influenza A virus H5N1 in humans is critical for the development of effective therapies and vaccines. Here we report the crystal structure of three H5-specific human monoclonal antibodies bound to the globular head of hemagglutinin (HA) with distinct epitope specificities, neutralization potencies and breadth. A structural and functional analysis of these epitopes combined with those reported elsewhere identifies four major vulnerable sites on the globular head of H5N1 HA. Chimeric and vulnerable site-specific mutant pseudoviruses are generated to delineate broad neutralization specificities of convalescent sera from two individuals who recovered from the infection with H5N1 virus. Our results show that the four vulnerable sites on the globular head rather than the stem region are the major neutralizing targets, suggesting that during natural H5N1 infection neutralizing antibodies against the globular head work in concert to provide protective antibody-mediated immunity.
Newly emerging highly pathogenic avian influenza (HPAI) H5N2, H5N3, H5N5, H5N6, H5N8 and H5N9 viruses have been spreading in poultry and wild birds. The H5N6 viruses have also caused 10 human infections with 4 fatal cases in China. Here, we assessed the cross-neutralization and cross-protection of human and mouse monoclonal antibodies against 2 viruses: a HPAI H5N8 virus, A/chicken/Netherlands/14015526/2014 (NE14) and a HPAI H5N6 virus, A/Sichuan/26221/2014 (SC14). The former was isolated from an infected chicken in Netherlands in 2014 and the latter was isolated from an infected human patient in Sichuan, China. We show that antibodies FLA5.10, FLD21.140, 100F4 and 65C6, but not AVFluIgG01, AVFluIgG03, S139/1 and the VRC01 control, potently cross-neutralize the H5N8 NE14 and H5N6 SC14 viruses. Furthermore, we show that a single injection of >1 mg/kg of antibody 100F4 at 4 hours before, or 20 mg/kg antibody 100F4 at 72 hours after, a lethal dose of H5N8 NE14 enables mice to withstand the infection. Finally, we show that a single injection of 0.5 or 1 mg/kg antibody 100F4 prophylactically or 10 mg/kg 100F4 therapeutically outperforms a 5-day course of 10 mg/kg/day oseltamivir treatment against lethal H5N8 NE14 or H5N6 SC14 infection in mice. Our results suggest that further preclinical evaluation of human monoclonal antibodies against newly emerging H5 viruses is warranted.
The threat of influenza A and B variants via antigenic drift and emerging novel influenza A and B strains in the human population via antigenic shift has spurred research efforts to improve upon current seasonal influenza vaccines. In recent years, a wave of novel technological breakthroughs has lead to the identification of many broadly anti-influenza hemagglutinin (HA) monoclonal antibodies (mAbs) and the elucidation of the conserved epitopes recognized by these mAbs in both the head and the stem of HA as well as the mechanisms of inhibition. These discoveries along with an improved understanding of how the immune system responds to influenza infection and vaccination has spurred great efforts on stem-based cross-subtype ('universal') vaccine design as well as RBS-based HA subtype-specific vaccine design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.