In this study, 44 compounds in the petroleum ether extract of Maqian (Zanthoxylum myriacanthum var. pubescens) bark, a traditional Dai herbal medicine, were identified by GC-MS. Major components included 3(2H)-benzofuranone, asarinin and (dimethoxymethyl)-3-methoxy-benzene. A total of 18 compounds were isolated from the ethyl acetate extracts of Maqian bark by column chromatography and identified by chemical and spectral analyses. Rhoifoline B, zanthoxyline dimethoxy derivative, N-nortidine, nitidine, decarine are the major alkaloids. Both the petroleum ether and ethyl acetate extracts showed significant inhibition on NO production, which imply anti-inflammatory activity, in lipopolysaccharide-induced RAW 264.7 cells without cell toxicity. Decarine is the major anti-inflammatory constituent with NO IC50 values of 48.43 μM on RAW264.7 cells. The petroleum ether extract, the ethyl acetate extract and decarine showed anti-inflammatory activities through inhibiting TNF-α and IL-1β production in lipopolysaccharide-stimulated THP-1 cells without cell toxicity too. Decarine showed anti-inflammatory activity on human colon cells by reducing IL-6 and IL-8 production in TNF-α+IL-1β-induced Caco-2 cells. These results support the use of Maqian bark as a remedy for enteritis and colitis recorded by Dai medicine in China, and elucidate the major pharmacological compounds in Maqian bark.
Reactive oxygen species (ROS) are highly reactive oxidant molecules that can kill cancer cells through irreversible damage to biomacromolecules. ROS-mediated cancer therapies, such as chemodynamic (CDT) and photodynamic therapy (PDT), are often limited by the hypoxia tumor microenvironment (TME) with high glutathione (GSH) level. This paper reported the preparation, characterization, in vitro and in vivo antitumor bioactivity of a meso-tetra(4-carboxyphenyl)porphine (TCPP)-based therapeutic nanoplatform (CMMFTP) to overcome the limitations of TME. Using Cu2+ as the central ion and TCPP as the ligand, the 2D metal-organic framework Cu-TCPP was synthesized by the solvothermal method, then CMMFTP was prepared by modifying MnO2, folic acid (FA), triphenylphosphine (TPP), and poly (allylamine hydrochloride) (PAH) on the surface of Cu-TCPP MOFs. CMMFTP was designed as a self-oxygenating ROS nanoreactor based on the PDT process of TCPP MOFs and the CDT process by Cu(II) and MnO2 components (mainly through Fenton-like reaction). The in vitro assay suggested CMMFTP caused a 96% lethality rate against Hela cells (MTT analysis) in specific response to TME stimulation. Moreover, the Cu(II) and MnO2 in CMMFTP efficiently depleted the glutathione (80%) in tumor cells and consequently amplified ROS levels to improve CDT/PDT effects. The FA-induced tumor targeting and TPP-induced mitochondria targeting further enhanced the antitumor activity. Therefore, the nanoreactor based on dual targeting and self-oxygenation-enhanced ROS mechanism provided a new strategy for cancer therapy.
Autism is known as a severe neurobehavioral syndrome, with males affected more often than females. Previous studies have revealed that microRNAs (miRNAs) play a critical role in the search for novel therapeutic strategies for autism. Therefore, we evaluate the ability of miR-153 to influence brain-derived neurotrophic factor (BDNF) of autism as well as proliferation and apoptosis of hippocampal neuron through the janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway by targeting leptin receptor (LEPR). Firstly, the autistic mice models were established and Morris water maze was employed for the analysis of the learning ability and memory of the mice. Besides, in vitro experiments were conducted with the transfection of different mimic, inhibitor, or siRNA into the hippocampal neuron cells, after which the effect of miR-153 on LEPR and the JAK-STAT signaling pathway-related factors was investigated. Next, 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay and flow cytometry assay were conducted to evaluate cell proliferation, cell cycle, and apoptosis respectively following transfection. The results revealed that there was a significant decrease in learning ability and memory in the autistic mice along with a reduction in the positive expression rate of BDNF and serious inflammatory reaction. LEPR was confirmed as a target gene of miR-153 by the dual luciferase reporter gene assay. After transfection of overexpressed miR-153, LEPR and the JAK-STAT signaling pathway were inhibited followed by an increase in BDNF and enhancement of cell proliferation. In conclusion, the high expression of miR-153 can inhibit activation of JAK-STAT signaling pathway by LEPR, thus improving BDNF expression and the proliferative ability of hippocampal neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.