Unaffected by cloud cover and solar illumination, synthetic aperture radar (SAR) images have great capability to map forest growing stem volume (GSV) in complex biophysical environments. Up to now, c-band dual-polarization Gaofen-3 (GF-3) SAR images, acquired by the first Chinese civilian satellite equipped with multi-polarized modes, are rarely applied in mapping forest GSV. To evaluate the capability of dual-polarization GF-3 SAR images in mapping forest GSV, several proposed derived features were initially extracted by mathematical operations and applied to obtain optimal feature sets by different feature sorting methods and feature selection methods. Then, the maps of GSV in an evergreen coniferous forest were inverted by various machine learning algorithms and stacking ensemble learning methods with different strategies. The results implied that backscattering coefficients and partially proposed derived features showed high sensitivity to the forest GSV, and the saturation phenomenon also obviously occurred once the forest GSV was larger than 300 m3/ha. Furthermore, the results showed that the accuracy of the mapped GSV was significantly improved using the stacking ensemble learning methods. Using various optimal feature sets and base models (MLR, KNN, SVM, and RF), the rRMSE values mainly ranged from 30% to 40%. After using the stacking ensemble learning methods, the values of rRMSE ranged from 16.71% to 20.51%. This confirmed that dual-polarization GF-3 images have great potential to map forest GSV in evergreen coniferous forests.
Forest stock volume (FSV) is a basic data source for estimating forest carbon sink. It is also a crucial parameter that reflects the quality of forest resources and forest management level. The use of remote sensing data combined with a support vector regression (SVR) algorithm has been widely used in FSV estimation. However, due to the complexity and spatial heterogeneity of the forest biological community, in the FSV high-value area with dense vegetation, the optical re-mote sensing variables tend to be saturated, and the sensitivity of synthetic aperture radar (SAR) backscattering features to the FSV is significantly reduced. These factors seriously affect the ac-curacy of the FSV estimation. In this study, Landsat 8 (L8) Operational Land Imager multispectral images and C-band Sentinel-1 (S1) hyper-temporal SAR images were used to extract three re-mote sensing feature datasets: spectral variables (L8), backscattering coefficients (S1), and inter-ferometric SAR factors (S1-InSAR). We proposed a feature selection method based on SVR (FS-SVR) and compared the FSV estimation performance of FS-SVR and stepwise regression analysis (SRA) on the aforementioned three remote sensing feature datasets. Finally, an estima-tion model of coniferous FSV was constructed using the SVR algorithm in Wangyedian Forest Farm, Inner Mongolia, China, and the spatial distribution map of coniferous FSV was predicted. The experimental results show the following: (1) The coherence amplitude and DSM data ob-tained based on S1 images contain information relat-ed to forest canopy height, and the hy-per-temporal S1 image data significantly enrich the diversity of S1-InSAR feature factors. There-fore, the S1-InSAR dataset has a better FSV response than remote sensing factors such as the S1 backscattering coefficient and L8 vegetation index, and the corresponding root mean square er-ror (RMSE) and relative RMSE (rRMSE) values reached 47.6 m3/ha and 20.9%, respectively. (2) The integrated dataset can provide full play to the synergy of the L8, S1, and S1-InSAR remote sensing data. Its RMSE and rRMSE values are 44.3 m3/ha and 19.4% respectively. (3) The proposed FS-SVR method can better select remote sensing variables suitable for FSV estimation than SRA. The average value of the rRMSE (23.17%) based on the three datasets was 13.8% lower than that of the SRA method (26.87%). This study provides new insights into forest FSV retrieval based on active and passive multisource remote sensing joint data.
Unaffected by cloud cover and solar illumination, synthetic aperture radar (SAR) images coupled with quad-polarimetric techniques have significant potential for mapping forest aboveground biomass (AGB) in the mountains of southern China. To improve the accuracy of mapping forest AGB, it is necessary to accurately interpret and evaluate the sensitivity of polarimetric features related to polarimetric response in complex forests. In this study, several rotated polarimetric features were extracted from L-band quad-polarimetric ALOS PALSAR-2 images based on uniform polarimetric matrix rotation theory. In addition, the sensitivity of rotated polarimetric features with forest parameters was evaluated by the Pearson correlation coefficient, sensitivity index (SI), and saturation levels. Ultimately, the forest AGB was mapped with various combinatorial feature sets by a proposed feature selection method based on the sensitivity index. The results illustrated that rotated polarimetric features extracted from the rotational domain have higher sensitivity with various forest parameters and higher saturation levels for mapping forests than other traditional features. After using the proposed feature selection method and combinatorial feature sets, the rRMSE of mapped forest AGB ranged from 22.5% to 33.9% for two acquired images, and the best result was obtained from the combination of three types of polarimetric features (BC + C4 + Ro). It is also confirmed that different types of features extracted from quad-polarimetric SAR images have better compensation effects and the accuracy of mapped forest AGB is significantly improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.