Structural-color films that feature unprecedented capabilities of both sensitive vapochromic and robust vapomechanical responses have been successfully developed. Based on these films' extraordinary properties, various structural-color actuators have been further fabricated and demonstrated, for example, a rotating pinwheel, an artificial blooming flower, and a worm-like walker with accompanying dynamic color alterations. These actuators exhibit fast, stable, and sharp color alterations together with non-fatigued and programmable motions, which can be used for sensing, communication, and disguise in soft robotics.
Nature provides much inspiration for developing soft millirobots. However, compared with smart and adaptations of lives in nature, these robotic systems still suffer from insufficiency of intelligence. Here, a new untethered soft millirobot with magnetic actuation in the head and function in the tail is presented via implementing control, actuation, and sensing directly in the materials, thereby endowing robots with multimodal locomotion and environment‐adaptive functions. Due to the soft and asymmetric structure, the millirobot not only shows robust multimodal locomotion, including controllable and transformable crawling, swinging and rolling, but also achieves an excellent capability of helical propulsion in water. Moreover, the robot also possesses outstanding obstacle‐crossing abilities, including helically propelling over obstacles (>2 body length), crawling within a 2 mm height tunnel and swinging through a 450 µm width channel. Furthermore, the robot can even squeeze its body to crawl through a tube easily via near‐infrared irradiation, which triggers the osmotic shrinking of its body. Notably, the robots also possess extraordinary environment‐adaptive functions, for example, leptocephali‐like optical camouflage in water, octopus‐like controllable delivery and variable appearance via visible color–shifting for interaction with the changing environment. These smart robotic systems would be of benefit in various fields via seamless integration of bioinspired design and smart materials.
Rapid formation of a confluent endothelial monolayer is the key to the success of small‐diameter vascular grafts, which is significantly important for treating dangerous and even sometimes deadly vascular disorders. However, the difficulty to homogenously locate endothelial cells onto the lumen of small‐diameter tubular scaffolds makes 3D endothelialization greatly challenging. Here, novel shape‐morphing scaffolds enabling programmed deformation from planar shapes to small‐diameter tubular shapes are designed and developed by combining biocompatible shape memory polymer and electrospun nanofibrous membrane. Endothelial cells can be conveniently seeded and attached on the 2D surface of the scaffolds and subsequently self‐rolled into 3D organization at physiological temperature. Endothelial cell responses and functions are varied on the shape‐morphing scaffolds with different nanofibrous electrospun membranes as the inner layer, arisen from the inducement of scaffolds with different morphological, physical, and biochemical characteristics. Owing to excellent properties of the nanofibrous membrane fabricated by the coelectrospinning of poly‐ε‐caprolactone (PCL) and gelatin methacrylate (GelMA), the shape‐morphing scaffolds with a nanofibrous PCL/GelMA inner layer support desirable homogeneous endothelial cell attachment as well as the rapid formation of biomimetic cell–scaffold interaction and cell–cell interaction under the 3D cell culture condition, therefore offering a visible approach for facile 3D endothelialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.