Vitamin D deficiency is a candidate risk factor for a range of adverse health outcomes. In a genome-wide association study of 25 hydroxyvitamin D (25OHD) concentration in 417,580 Europeans we identify 143 independent loci in 112 1-Mb regions, providing insights into the physiology of vitamin D and implicating genes involved in lipid and lipoprotein metabolism, dermal tissue properties, and the sulphonation and glucuronidation of 25OHD. Mendelian randomization models find no robust evidence that 25OHD concentration has causal effects on candidate phenotypes (e.g. BMI, psychiatric disorders), but many phenotypes have (direct or indirect) causal effects on 25OHD concentration, clarifying the epidemiological relationship between 25OHD status and the health outcomes examined in this study.
Accurate prediction of an individual’s phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. We extend a powerful individual-level data Bayesian multiple regression model (BayesR) to one that utilises summary statistics from genome-wide association studies (GWAS), SBayesR. In simulation and cross-validation using 12 real traits and 1.1 million variants on 350,000 individuals from the UK Biobank, SBayesR improves prediction accuracy relative to commonly used state-of-the-art summary statistics methods at a fraction of the computational resources. Furthermore, using summary statistics for variants from the largest GWAS meta-analysis (n ≈ 700, 000) on height and BMI, we show that on average across traits and two independent data sets that SBayesR improves prediction R2 by 5.2% relative to LDpred and by 26.5% relative to clumping and p value thresholding.
The capacity to accurately predict an individual's phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. Recently, Bayesian methods for generating polygenic predictors have been successfully applied in human genomics but require the individual level data, which are often limited in their access due to privacy or logistical concerns, and are computationally very intensive. This has motivated methodological frameworks that utilise publicly available genome-wide association studies (GWAS) summary data, which now for some traits include results from greater than a million individuals. In this study, we extend the established summary statistics methodological framework to include a class of point-normal mixture prior Bayesian regression models, which have been shown to generate optimal genetic predictions and can perform heritability estimation, variant mapping and estimate the distribution of the genetic effects. In a wide range of simulations and cross-validation using 10 real quantitative traits and 1.1 million variants on 350,000 individuals from the UK Biobank (UKB), we establish that our summary based method, SBayesR, performs similarly to methods that use the individual level data and outperforms other state-of-the-art summary statistics methods in terms of prediction accuracy and heritability estimation at a fraction of the computational resources. We generate polygenic predictors for body mass index and height in two independent data sets and show that by exploiting summary statistics on 1.1 million variants from the largest GWAS meta-analysis (n ≈ 700, 000) that the SBayesR prediction R 2 improved on average across traits by 6.8% relative to that estimated from an individual-level data BayesR analysis of data from the UKB (n ≈ 450, 000). Compared with commonly used state-of-the-art summarybased methods, SBayesR improved the prediction R 2 by 4.1% relative to LDpred and by 28.7% relative to clumping and p-value thresholding. SBayesR gave comparable prediction accuracy to the recent RSS method, which has a similar model, but at a computational time that is two orders of magnitude smaller. The methodology is implemented in a very efficient and user-friendly software tool titled GCTB. Introduction 1The capacity to accurately predict an individual's phenotype from their DNA sequence 2 is one of the great promises of genomics and precision medicine 1-5 , recognising that the 3 accuracy of a genetic risk predictor is dependent on the genetic contribution to variation 4 in the trait. It is anticipated that genetic risk prediction will be useful for informing early 5 disease intervention and aiding diagnosis by identifying individuals with an increased 6 genetic risk of disease 5-7 . Accurate genetic predictors for complex traits and disorders are 7 currently limited, due mainly to an incomplete understanding of complex genetic varia-8 tion, small training sample sizes and suboptimal modelling 4,8,9 . Through large consortia 9 and biobank initiatives, sample sizes for gen...
Genotype-by-environment interaction (GEI) is a fundamental component in understanding complex trait variation. However, it remains challenging to identify genetic variants with GEI effects in humans largely because of the small effect sizes and the difficulty of monitoring environmental fluctuations. Here, we demonstrate that GEI can be inferred from genetic variants associated with phenotypic variability in a large sample without the need of measuring environmental factors. We performed a genome-wide variance quantitative trait locus (vQTL) analysis of ~5.6 million variants on 348,501 unrelated individuals of European ancestry for 13 quantitative traits in the UK Biobank and identified 75 significant vQTLs with P < 2.0 × 10−9 for 9 traits, especially for those related to obesity. Direct GEI analysis with five environmental factors showed that the vQTLs were strongly enriched with GEI effects. Our results indicate pervasive GEI effects for obesity-related traits and demonstrate the detection of GEI without environmental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.