Hydnocarpin D (HD) is a bioactive flavonolignan compound that possesses promising anti-tumor activity, although the mechanism is not fully understood. Using T cell acute lymphoblastic leukemia (T-ALL) cell lines Jurkat and Molt-4 as model system, we found that HD suppressed T-ALL proliferation in vitro, via induction of cell cycle arrest and subsequent apoptosis. Furthermore, HD increased the LC3-II levels and the formation of autophagolysosome vacuoles, both of which are markers for autophagy. The inhibition of autophagy by either knockdown of ATG5/7 or pre-treatment of 3-MA partially rescued HD-induced apoptosis, thus suggesting that autophagy enhanced the efficacy of HD. Interestingly, this cytotoxic autophagy triggered ferroptosis, as evidenced by the accumulation of lipid ROS and decrease of GSH and GPX4, while inhibition of autophagy impeded ferroptotic cell death. Our study suggests that HD triggers multiple cell death processes and is an interesting compound that should be evaluated in future preclinical studies.
Background Retinoids are promising agents in the treatment of different types of neoplasia including estrogen receptor-positive breast cancers, whereas refractoriness/low sensitivity is observed in triple-negative breast cancer (TNBC) subtype. However, the reason for these diverse retinoid-sensitivity remains elusive. Methods Determinants of retinoid sensitivity were investigated using immunohistochemistry of primary patient samples, and identified retinoic acid receptor α (RARα) as a putative factor. The anti-tumor activity of hypo-phosphorylated RARα was investigated in TNBC cell models and a xenograft mouse model. Next, miRNA sequencing analysis was performed to identify the target miRNA of RARα, and luciferase reporter was used to confirm the direct target gene of miR-3074-5p. Results We discovered that serine-77 residue of RARα was constantly phosphorylated, which correlated with TNBC’s resistance to retinoids. Overexpression of a phosphorylation-defective mutant RARαS77A mimicked activated RARα and repressed TNBC cell progression both in vitro and in vivo, via activating cell cycle arrest, apoptosis, and cytotoxic autophagy, independent of RARα agonists. We further revealed that the anti-tumor action of RARαS77A was, at least in part, mediated by the up-regulation of miR-3074-5p, which directly targeted DHRS3, a reductase negatively associated with TNBC patient survival. Our results suggest that the inhibition of RARαS77 phosphorylation by either expressing RARαS77A or inhibiting RARα’s phosphokinase CDK7, can bypass RA stimuli to transactivate tumor-suppressive miR-3074-5p and reduce oncogenic DHRS3, thus overcoming the RA-resistance of TNBC. Conclusion The novel regulatory network, involving RARαS77 phosphorylation, miR-3074-5p, and DHRS3, emerges as a new target for TNBC treatment.
Acute T lymphocytic leukemia (T-ALL) is an aggressive hematologic resulting from the malignant transformation of T-cell progenitors. Drug resistance and relapse are major difficulties in the treatment of T-ALL. Here, we report the antitumor potency of NL-101, a compound that combines the nitrogen mustard group of bendamustine with the hydroxamic acid group of vorinostat. We found NL-101 exhibited efficient antiproliferative activity in T-ALL cell lines (IC50 1.59–1.89 μM), accompanied by cell cycle arrest and apoptosis, as evidenced by the increased expression of Cyclin E1, CDK2, and CDK4 proteins and cleavage of PARP. In addition, this bendamustine-derived drug showed both a HDACi effect as demonstrated by histone hyperacetylation and p21 transcription and a DNA-damaging effect as shown by an increase in γ-H2AX. Intriguingly, we found that NL-101-induced autophagy in T-ALL cells through inhibiting Akt-mTOR signaling pathway, as indicated by an increase in LC3-I to LC3-II conversion and decrease of p62. Furthermore, inhibition of autophagy by 3-methyladenine increased apoptotic cell death by NL-101, suggesting a prosurvival role of autophagy. In summary, our finding provides rationale for investigation of NL-101 as a DNA/HDAC dual targeting drug in T-ALL, either as a single agent or in combination with autophagy inhibitors.
LFZ-4-46, that is [2-hydroxy-1-phenyl-1,5,6,10b-tetrahydropyrazolo(5,1-a) isoquinolin-3(2 H )-yl](phenyl) methanone, a tetrahydroisoquinoline derivative with a pyrazolidine moiety, was synthetically prepared. The anti-cancer mechanism of the compound has not been clarified yet. In this study, the anticancer effects and potential mechanisms of LFZ-4-46 on human breast and prostate cancer cells were explored. (a) 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromide assay was first performed to detect the effects of LFZ-4-46 on the viability of human cancer cells. (b) Comet assay was utilized to evaluate DNA damage. (c) Cell cycle, apoptosis and mitochondrial membrane potential were detected by flow cytometry. (d) The expression of relative proteins was detected by western blotting assay. LFZ-4-46 significantly inhibited the viability of cancer cells in a time- and dose-dependent manner and had no obviously inhibitory effect on the viability of mammary epithelial MCF-10A cells. Mechanistic studies demonstrated that LFZ-4-46-induced cell apoptosis and cycle arrest were mediated by DNA damage. It caused DNA damage through activating γ-H2AX and breaking DNA strands. Further studies showed that mitogen-activated protein kinasess pathway was involved in these activated several key molecular events. Finally, LFZ-4-46 showed a potent antitumor effect in vivo . These results suggest that LFZ-4-46 may be a potential lead compound for the treatment of breast and prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.