The vision of nanoscale self-assembly research is the programmable synthesis of macroscale structures with controlled long and short-range order that exhibit a desired set of properties and functionality. However, strategies to reliably isolate and manipulate the nanoscale building blocks based on their size, shape, or chemistry are still in their infancy. Among the promising candidates, DNA-mediated self-assembly has enabled the programmable assembly of nanoparticles into complex architectures. In particular, two-dimensional assembly on substrates has potential for the development of integrated functional devices and analytical systems. Here, we combine the high-resolution patterning capabilities afforded by electron-beam lithography with the DNA-mediated assembly process to enable direct-write grayscale DNA density patterning. This method allows modulation of the functionally active DNA surface density to control the thermodynamics of interactions between nanoparticles and the substrate. We demonstrate that size-selective directed assembly of nanoparticle films from solutions containing a bimodal distribution of particles can be realized by exploiting the cooperativity of DNA binding in this system. To support this result, we study the temperature-dependence of nanoparticle assembly, analyze the DNA damage by X-ray photoelectron spectroscopy and fluorescence microscopy, and employ molecular dynamics simulations to explore the size-selection behavior.
The ion distribution of electrolytes near interfaces with dielectric contrast has important consequences for electrochemical processes and many other applications. To date, most studies of such systems have focused on geometrically simple interfaces, for which dielectric effects are analytically solvable or computationally tractable. However, all real surfaces display nontrivial structure at the nanoscale and have, in particular, nonuniform local curvature. Using a recently developed, highly efficient computational method, we investigate the effect of surface geometry on ion distribution and interface polarization. We consider an asymmetric 2:1 electrolyte bounded by a sinusoidally deformed solid surface. We demonstrate that even when the surface is neutral, the electrolyte acquires a nonuniform ion density profile near the surface. This profile is asymmetric and leads to an effective charging of the surface. We furthermore show that the induced charge is modulated by the local curvature. The effective charge is opposite in sign to the multivalent ions and is larger in concave regions of the surface. arXiv:1809.05991v1 [cond-mat.soft]
Spherical Janus colloids, particles with different surface properties on their two hemispheres, are generally heterogeneous in permittivity. This dielectric heterogeneity may affect their behavior in electrolytes and external electric fields, but is typically not taken into account in computational studies. We apply the iterative dielectric solver developed by Barros and Luijten [Phys. Rev. Lett., 2014, 113, 017801] in combination with preconditioning techniques that can accurately and efficiently compute the polarization of dielectrically anisotropic particles. Employing this approach, we systematically study the ion distribution around neutral and charged Janus particles with various permittivities, immersed in symmetric and asymmetric electrolytes. We demonstrate that neutral Janus colloids may carry a nonzero dipole moment in asymmetric salts. For charged Janus colloids, dielectric effects can substantially influence the electric double layer. These findings also have implications for other dielectrically anisotropic entities, such as proteins.
Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties. arXiv:1602.03561v1 [cond-mat.soft]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.