Based on the dynamic behavior of laser keyhole, the time characteristics of coupling discharge of heat source in pulsed laser induced double-TIG welding (LIDTW) are studied. The behaviors of arc plasma and laser keyhole were directly observed by high-speed camera and auxiliary illumination source. The physical characteristics of arc plasma were analyzed by spectrometer and arc quality analyzer. A physical model is established to reveal the regulation mechanism of time characteristics of coupling discharge. It is found that after laser pulse action the coupling discharge between keyhole plasma and double-arc plasma does not end immediately, and its time depends on the existence time of keyhole. During hybrid welding, when the combined force of arc pressure and Marangoni force can overcome the gravity, the liquid metal is forced out of the keyhole and the keyhole remains open. Improving the electron density of arc plasma and arc voltage and reducing the diameter of arc conductive channel by selecting appropriate parameters to is the key to prolong the existence time of keyhole, which is beneficial to improve the welding penetration. The coupling enhancement of double-arc electromagnetic field in LIDTW can effectively suppress keyhole backfill and increase the duty ratio of coupling discharge. When the total current intensity is 200 A, compared with laser induced single-TIG welding (LISTW), the existence time of keyhole in LIDTW increases by 77 %, the duty ratio of coupling discharge increases by 12 %, and the weld penetration increases by 29.2 %.
Low power pulsed laser-MAG hybrid welding was carried out by different heat source arrangement methods (lead mode, distance between laser spot and welding wire tip (DLA)). The coupling effect and welding characteristics of hybrid heat sources under different modes were studied by using high speed image (HSI) and real-time electrical signals. HSI observation and electronic signals showed that the lead mode and DLA significantly affect the coupling state of heat source and welding characteristics (weld morphology, process stability and droplet transfer). The influence of lead mode on weld forming was more significant than that of DLA.In laser-lead mode, when DLA = 1~2mm, the laser and arc had perfect coupling effect, good weld formation, less spatter and greater penetration. In arc-lead mode, the weld formation was poor and undercut defects were common, while the overall penetration was greater than that in laser-lead mode. In terms of welding process stability, arc-lead mode was better than laser-lead mode. The pulsed laser increased the stability of projected transition, produced more fine droplets and reduced the generation of spatter. When DLA = 1~2mm, stable droplet transfer could be realized under both modes.
From the viewpoint of BDS bridge displacement monitoring, which is easily affected by background noise and the calculation of a fixed threshold value in the wavelet filtering algorithm, which is often related to the data length. In this paper, a data processing method of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), combined with adaptive threshold wavelet de-noising is proposed. The adaptive threshold wavelet filtering method composed of the mean and variance of wavelet coefficients of each layer is used to de-noise the BDS displacement monitoring data. CEEMDAN was used to decompose the displacement response data of the bridge to obtain the intrinsic mode function (IMF). Correlation coefficients were used to distinguish the noisy component from the effective component, and the adaptive threshold wavelet de-noising occurred on the noisy component. Finally, all IMF were restructured. The simulation experiment and the BDS displacement monitoring data of Nanmao Bridge were verified. The results demonstrated that the proposed method could effectively suppress random noise and multipath noise, and effectively obtain the real response of bridge displacement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.