In this study, a method based on the discrete wavelet transform (DWT) and azimuth-scale expansion is presented to retrieve the sea-surface wind direction from a single X-band marine radar image. The algorithm first distinguishes rain-free and rain-contaminated radar images based on the occlusion zero-pixel percentage and then discards the rain-contaminated images. The radar image whose occlusion areas have been removed is decomposed into different low-frequency sub-images by the 2D DWT, and the appropriate low-frequency sub-image is selected. Images collected with a standard marine HH-polarized X-band radar operating at grazing incidence display a single intensity peak in the upwind direction. To overcome the influence of the occlusion area, before determining the wind direction, the data near the ship bow are shifted to expand the azimuth scale of the data. Finally, a harmonic function is least-square-fitted to the range-averaged radar return of the low-frequency sub-image as a function of the antenna look azimuth to determine the wind direction. Different from the wind-direction retrieval algorithms previously presented, this method is more suitable for sailing ships, as it functions well even if the radar data are heavily blocked. The results show that compared with the single-curve fitting algorithm, the algorithm based on DWT and azimuth-scale expansion can improve the wind-direction results in sailing ships, showing a reduction of 7.84° in the root-mean-square error with respect to the reference.
This paper presents a novel algorithm based on the attenuation horizontal component for wind direction retrieval from X-band marine radar images. The range dependence of radar return on the ocean surface can be presented in radar images, and the radar return decreases with the increase in range. The traditional curve-fitting method averages the radar return of the whole range to retrieve the wind direction, but it is vulnerable to the interference of fixed objects and long-range low-intensity pixel points. For the pixels with the same range in the polar coordinates of the radar image, the ideal range attenuation model is derived by selecting the pixels with the highest intensity value. The ideal attenuation model is used to fit the attenuation data and calculate the attenuation horizontal component at each azimuth direction. To eliminate the effect of outliers, the iterative optimization method is used in the estimation of the attenuation horizontal component and the weights of the data are continuously updated. Finally, the wind direction is determined based on the azimuthal dependence of the attenuation horizontal component. This algorithm was tested using shipboard radar images and anemometer data collected in the East China Sea. The results show that, compared with the single curve-fitting method, the proposed algorithm can improve the wind direction retrieval accuracy in the case of more fixed targets. Under the condition of more fixed targets, the deviation and root mean square error are reduced by 16.3° and 16.2°, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.