Gait recognition aims at identifying the pedestrians at a long distance by their biometric gait patterns. It is inherently challenging due to the various covariates and the properties of silhouettes (textureless and colorless), which result in two kinds of pair-wise hard samples: the same pedestrian could have distinct silhouettes (intra-class diversity) and different pedestrians could have similar silhouettes (inter-class similarity). In this work, we propose to solve the hard sample issue with a Memoryaugmented Progressive Learning network (GaitMPL), including Dynamic Reweighting Progressive Learning module (DRPL) and Global Structure-Aligned Memory bank (GSAM). Specifically, DRPL reduces the learning difficulty of hard samples by easy-tohard progressive learning. GSAM further augments DRPL with a structure-aligned memory mechanism, which maintains and models the feature distribution of each ID. Experiments on two commonly used datasets, CASIA-B and OU-MVLP, demonstrate the effectiveness of GaitMPL. On CASIA-B, we achieve the state-of-the-art performance, i.e., 88.0% on the most challenging condition (Clothing) and 93.3% on the average condition, which outperforms the other methods by at least 3.8% and 1.4%, respectively.
Gait recognition has a rapid development in recent years. However, current gait recognition focuses primarily on ideal laboratory scenes, leaving the gait in the wild unexplored. One of the main reasons is the difficulty of collecting in-the-wild gait datasets, which must ensure diversity of both intrinsic and extrinsic human gait factors. To remedy this problem, we propose to construct a large-scale gait dataset with the help of controllable computer simulation. In detail, to diversify the intrinsic factors of gait, we generate numerous characters with diverse attributes and associate them with various types of walking styles. To diversify the extrinsic factors of gait, we build a complicated scene with a dense camera layout. Then we design an automatic generation toolkit under Unity3D for simulating the walking scenarios and capturing the gait data. As a result, we obtain a dataset simulating towards the in-the-wild scenario, called VersatileGait, which has more than one million silhouette sequences of 10,000 subjects with diverse scenarios. VersatileGait possesses several nice properties, including huge dataset size, diverse pedestrian attributes, complicated camera layout, high-quality annotations, small domain gap with the real one, good scalability for new demands, and no privacy issues. By conducting a series of experiments, we first explore the effects of different factors on gait recognition. We further illustrate the effectiveness of using our dataset to pre-train models, which obtain considerable performance gain on CASIA-B, OU-MVLP, and CASIA-E. Besides, we show the great potential of the fine-grained labels other than the ID label in improving the efficiency and effectiveness of models. Our dataset and its corresponding generation toolkit are available at https://github.com/peterzpy/VersatileGait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.