A ZnO@graphene composite exhibits enhanced performance for photocatalytic degradation and filtered removal of RhB dye, in comparison with ZnO and graphene, highlighting its potential applications for a variety of environmental issues.Scheme 1 An illustration of the synthesis of the ZGC.
This paper reports on the synthesis of Co(3)O(4)@graphene composites (CGC) and their applications as anode materials in lithium ion batteries (LIBs). Through a chemical deposition method, Co(3)O(4) nanoparticles (NPs) with sizes in the range of 10-30 nm were homogeneously dispersed onto graphene sheets. Due to their high electrical conductivity, the graphene sheets in the CGC improved the electrical conductivity and the structure stability of CGC. CGC displayed a superior performance in LIBs with a large reversible capacity value of 941 mA hg(-1) in the initial cycle with a large current density and an excellent cyclic performance of 740 mA hg(-1) after 60 cycles, corresponding to 88.3% of the theoretical value of CGC, owing to the interactions between graphene sheets and Co(3)O(4) NPs anchored on the graphene sheets. This synthesis approach may find its application in the design and synthesis of novel electrode materials used in LIBs.
In this paper, a Fe 3 O 4 nanocrystals@graphene composite (FGC) was synthesized via a chemical deposition method by using graphene oxide as a precursor. We also investigate the structures, physicochemical properties and applications of FGCs, involving superparamagnetic performance, and use as supercapacitors and lithium ion battery (LIBs). The results showed that the Fe 3 O 4 NCs were formed and incorporated onto the surface of the graphene sheets. The composite material FGC with a micrometre scale structure possessed similar size as the graphene sheets and exhibited superparamagnetic behavior at room temperature. The supercapacitance values of the FGC composites were enlarged compared with those of the graphene sheets or Fe 3 O 4 NCs, which is attributed to the interaction between the Fe 3 O 4 NCs and the graphene sheets. Meanwhile, a superior rechargeable stability of FGCs used as an anode material in LIBs can be observed.
Metallic nanowires protected from oxidation and corrosion by a sheath of polyaniline have been prepared in arrays on an alumina membrane support. The cobalt wire/polyaniline tubule nanocomposite structures (see Figure), which are produced by using the polyaniline tubules as a template for the growth of the metal wires, have potential in applications such as magnetic antenna materials.
A three dimensional composite was constructed by anchoring Fe(3)O(4) nanoparticles encapsulated within carbon shells onto reduced graphene oxide sheets, which exhibited enhanced anode performances in lithium ion batteries with a specific capacity of 842.7 mAh g(-1) and superior recycle stability after 100 cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.