Temporal cloaks have aroused tremendous research interest in both optical physics and optical communications, unfolding a distinct approach to conceal temporal events from an interrogating optical field. The state-of-the-art temporal cloaks exhibit picosecond-scale and static cloaking window, owing to significantly limited periodicity and aperture of time lens. Here we demonstrate a field-programmable silicon temporal cloak for hiding nanosecond-level events, enabled by an integrated silicon microring and a broadband optical frequency comb. With dynamic control of the driving electrical signals on the microring, our cloaking windows could be stretched and switched in real time from 0.449 ns to 3.365 ns. Such a field-programmable temporal cloak may exhibit practically meaningful potentials in secure communication, data compression, and information protection in dynamically varying events.
We propose and experimentally demonstrate an energy-efficient optical diode based on the optomechanical effect. The optical signals could transmit during forward propagation while be blocked during backward propagation. When launching optical signal with a low power of 4.0 mW, the maximum resonance red-shift of the asymmetric silicon microring resonator (MRR) could be up to 0.74 nm, in this case, a forward-backward nonreciprocal transmission ratio (NTR) of 12.7 dB has been achieved. The 10-dB and 5-dB operation bandwidths are 0.08 nm and 0.24 nm, respectively. The operating bandwidth could be continuously tuned theoretically by changing the input power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.